
Supplementary

Xu Yang1,* Chongyang Gao2,∗ Hanwang Zhang3 Jianfei Cai4
1 School of Computer Science and Engineering, Southeast University

2 Department of Computer Science, Dartmouth College
3 School of Computer Science and Engineering, Nanyang Technological University

4 Department of Data Science and AI, Monash University
xuyangaca@gmail.com chongyang.gao.gr@dartmouth.edu hanwangzhang@ntu.edu.sg

Jianfei.Cai@monash.edu

1. Parse Trees
More examples of parse trees generated by our APN are illustrated. Specifically, there are three examples for captioning

in Figure 1 and three examples for VQA in Figure 2.
We visualize the language and image trees for captioning in Figure 1. To parse trees, we use the M of all NL and NV

self-attention layers constrained by the probabilistic graphical model in our APN. The left and middle parts show the trees
of the generated caption and the given image, respectively. The RoIs are sorted from top-left to bottom-right. Because of the
structure of the Transformer and the developed algorithm, our APN generates captions in a phrase-by-phrase manner instead
of a word-by-word manner, as shown by the leaves of the language trees. For example, in the second row, our captioner first
generates the phrase “a dog walking” and in this way, more details such as “in the snow” and “with a stick” will be described.
Comparing language trees with visual trees, we can find that they have similar hierarchical structures, e.g., in the second row,
the leftmost leaves of both trees focus on “a dog walking” and the rightmost leaves focus on ‘with a stick”; in the third row,
the leaves of both trees focus on “a woman”, “holding” and “a pair of scissors” from the left to the right leaves.

For parsed trees in VQA, We use the M from all Nc = 6 probabilistic graphical model constrained self-attention layers
of the decoder in our APN to parse the trees. Three examples are illustrated in the Figure 2. In these examples, we can also
find similar hierarchical structures between language and visual trees. For example, in the first row, the leaves of language
and visual trees focus on “this person” and “doing” from the left to the right leaves.

2. PGM constrain implementation details
We show the pseudocode of probabilistic graphical model constrain in PyTorch-like style in Algorithm 1. In the imple-

mentation, we first prepare the masks to constrain the connections of each x to its neighbors. Then, we calculate the Bernoulli
distribution and the θ following Eq. (5). The θ̃ is calculated by Eq. (10) to satisfy the requirement that the entities in a lower-
layer cluster are still in a higher-layer cluster. Finally, we calculate M by Eq. (8) and use it to constrain the self-attention
layer. By Eq. (9), in a soft way, the original fully-connected graph becomes a sparser graph that contains a few clusters, and
the entities are only connected in the same cluster.

3. Performance of improved constraint matrix
For the VQA-v2 dataset, the overall accuracy of the model using the constraint matrix without our improvement is 66.32,

which is worse than the PGM’s accuracy, 66.51. In the image captioning task, the model using the constraint matrix without
improvement achieves 129.8 CIDEr-D score, which is worse than the PGM’s CIDEr-D score, 130.4 in Table 2. Thus, our
improved constraint matrix is better than [63] and effectively improves the performance.

*Both authors contributed equally to this research.

the atrunway

a group of airplanes parked on the runway at an airport

parked

a group of

on an airport

airplanes

a stick

a dog walking in the snow with a stick

snow

a dog walking

withthein

of scissors

a woman holding a pair of scissors

a woman

aholding pair

Figure 1. The parsed trees for captioning. The same colors between language and visual trees show the alignments.

4. Removing the PGM from the Nc module.
For the VQA-v2 dataset, the overall accuracy of the PGM whose constrain from the NC module is removed is 66.17,

which is better than the accuracy of BASE 65.84 and worse than the original accuracy of the PGM, 66.51 in Table 4.

what is this person doing?

what

is

doing?

this person

what is the bear called?

what the bear

how many propellers can you see?

how many

see?

propellers can you

is

called

Figure 2. The parsed trees for VQA. The same colors between language and visual trees show the alignments.

Algorithm 1 Pseudocode of probabilistic graphical model constrain in a PyTorch-like style
class PGM-attention(nn.Module):

def init (self, hidden size=512, dropout=0.8):
super(PGM-attention, self). init ()
self.h size = hidden size
self.linear key = nn.Linear(hidden size,hidden size)
self.linear query = nn.Linear(hidden size,hidden size)
self.norm = LayerNorm(hidden size)
self.dropout = nn.Dropout(dropout)

def forward(self, context, eos mask, prior tilde theta):
batch size, seq len = context.size()[:2]
Prepare neighbors mask
a = torch.from numpy(np.diag(np.ones(seq len - 1, dtype=np.int64), 1))
b = torch.from numpy(np.diag(np.ones(seq len, dtype=np.int64), 0))
c = torch.from numpy(np.diag(np.ones(seq len - 1, dtype=np.int64), -1))
tri matrix = torch.from numpy(np.triu(np.ones([seq len, seq len],

dtype=np.float32), 0))
mask = eos mask & (a + c)
Calculate Bernoulli distributions
key = self.linear key(context)
query = self.linear query(context)
att = torch.matmul(query, key.transpose(-2, -1)) / torch.sqrt(self.h size)
Ber = F.softmax(att.masked fill(mask == 0, -1e9), dim=-1)
Calculate Tilde Theta
theta = Ber * Ber.transpose(-2, -1) + 1e-9
tilde theta = prior tilde theta + (1. - prior tilde theta) * theta
tilde theta= torch.log(tilde theta + 1e-9).masked fill(a == 0,

0).matmul(tri matrix)
Calculate M
M = tri matrix.matmul(tilde theta).exp().masked fill((tri matrix.int() - b)

== 0, 0)
M = M + M.transpose(-2, -1) + tilde theta.masked fill(b == 0, 1e-9)
return M

