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In the supplemental document, we provide:

§A Anatomically Constrained A-MANO.

§B Detailed Analysis of the Spring’s Elasticity.

§C Detailed Analysis of the HO3D Dataset.

§D More Experiments and Results.

§E More Qualitative Results.

A. Anatomically Constrained A-MANO
A.1. Derivation of Twist-splay-bend Frame.

In this section, we introduce the proposed twist-splay-
bend frame of A-MANO. Both the original MANO [11]
and our A-MANO hand model are driven by the relative
rotation at each articulation. To mitigate the pose abnor-
mality, we apply constraints on the rotation axis-angle1.
We intend to decompose the rotation axis into three com-
ponents to the three axes of a Euclidean coordinate frame,
in which each component depicts the proportion of rotation
along that axis. Obviously, there have infinity choices of the
three orthogonal axes. MANO adopts 16 identical coordi-
nate frames whose 3 orthogonal axes are not coaxial to the
direction of the hand kinematic tree (Fig. 1 left). Different
from MANO, we follow the Universal Robot Description
Format (URDF) [8] that describe each articulation along
the hand kinematic tree as a revolute joint2. Nevertheless, a
revolute joint only has one degree of freedom, which is not
enough to drive the motion of a real hand. Thus, we assign
each articulation with three revolute joints, named as twist,
splay and bend (Fig. 1 right),

Here, we elaborate the conversion from the MANO’s all
identical coordinate system of to our twist-splay-bend frame
in three steps. For each articulation, we first compute the
twist axis as the vector from the child of the current joint to
itself. Then we employ MANO’s y (up) axis and derive the
bend axis that is calculated from cross product on the twist
and y axes. Finally, we obtain the splay axis by applying
cross product on the bend and twist axes. We illustrate the
above procedures in Fig. 2.

1Rotation cay be represented as rotating along an axis by an angle.
2https://en.wikipedia.org/wiki/Revolute_joint
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Figure 1. Visual comparison of MANO’ s coordinate system to the
proposed twist-splay-bend system.
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Figure 2. Illustration of converting MANO’ s coordinates system
to the proposed twist-splay-bend system.

A.2. Hand Subregion Assignment

As introduced in main text §3 (Anchors.), we divide the
hand palm into 17 subregions, and interpolate the vertices
in each subregion into representative anchor / anchors. In
this part, we will firstly discuss how we assign hand vertices
to several subregion.

According to hand anatomy, the linkage bones consists
of carpal bones, metacarpal bones, and phalanges, where
phalanges can be further divided into three kinds: proximal
phalanges, intermediate phalanges, and distal phalanges.
Here we assume the link between MANO joints are a coun-
terpart of linkage bones on hand. We now assign the ver-
tices of MANO into 17 subregions based on the linkage
bones. The subregions’ names and abbreviations are de-
fined in Fig. 3. For clarity, we number the MANO links
from 1 to 20 as illustrated in Fig. 4 (left).

To assign the MANO vertices to its corresponding re-
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Figure 3. Hand subregions with names and abbreviations.
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Figure 4. Left: joint links with ID; Middle: control points with ID;
Right: anchors

gion, we need firstly assign the vertices to the link that lies
inside the region. This is achieved by control points. For
link 0-3, 5-7, 9-11, 13-15, 17-20, we set one control point
at the midpoint of the link’s ends, while for link 4, 8, 12,
and 16, we set two control points at the upper and lower
third of the link’s ends. For clarity, we also number the con-
trol points from 0 to 23 as shown in Fig. 4 (middle). After
a list of control points are obtained, we label each hand ver-
tex to one of these control points by querying which control
point it has the least distance from. Finally, we merge the
vertices that belong to control points 0, 5, 10, 15, and 20
to derive subregion of Palm Metacarpal, and merge those
vertices that belong to control points 4, 9, 14, 19 to derive
subregion of Carpal .

A.3. Hand Anchor Selection

Here we elaborate on how we select the anchors based on
the subregions and their control points. To ensure these an-
chors can be used in a common optimization framework and
keep their representative power during the process of opti-
mization, we propose the following three protocols: a) An-
chors should be located on the surface of the hand mesh.
b) Anchors should distribute uniformly on the surface of
the region it represents. c) Anchors can be derived from
hand vertices in a differentiable way.

Anchors are located on the surface of hand mesh (pro-
tocol a), so they must be located on some certain faces
of the hand mesh. We can use the vertices of the face on

which hand anchors reside to interpolate the anchors’ posi-
tion. Suppose the hand mesh has the form of M = (V,F),
where V is a set of all vertices and F is a set of all faces.
Considering one face f ∈ F of mesh whose vertices are
stored in order: f = {ik},vk = V[ik], k ∈ {1, 2, 3}. We
can get two edges of that face: e1 = v2−v1, e2 = v3−v1.
Then the local position of the anchor ã inside the face
can be represented by linear interpolation of e1 and e2:
ã = x1e1 + x2e2, where the x1, x2 are some weights.
Finally, the global position of the anchor a will be a =
v1+ã = v1+x1e1+x2e2 = (1−x1−x2)v1+x1v2+x2v3.
During the optimization process, we can use the precom-
puted face f and weights x1, x2, along with the predicted
hand vertices V to calculate the position of all the anchors.
As the anchor is a linear combination of hand vertices, any
loss that is applied to the anchors’ position can be back-
propagated to the vertices on the MANO surface, making
the anchor-bases hand mesh differentiable.

We utilize control points introduced in §A.2 to derive an-
chors. Since the anchor selection is independent of hand’s
configuration, we adopt a flat hand in the canonical coordi-
nate system. As illustrated in Fig. 4 (middle, right), the con-
trol points are roughly uniformly distributed in each subre-
gion. Each control point will correspond to an anchor of
that subregion. The Carpal is an only exception: we select
only 3 over 5 (ID: 5, 10, 20) of the control points in the
subregion of Carpal for anchor derivation.

To derive an anchor from a control point, we need to get
one face (consist of 3 integers) and two weights. 1) Non-tip
regions. For non-tip regions, we cast a ray that is orig-
inated from each control point in a certain subregion, and
pointing to the palm surface. We retrieve the first intersec-
tion of the ray with hand mesh. This intersection will be the
anchor that correspond to the control point, also the sub-
region. 2) Tip regions. For tip regions, we would select
three anchors of each control point to increase the density of
anchors in that subregion, as tip involves more contact in-
formation during manipulation. For the control point in tip
subregions, we first cast a ray originated from the control
point and get the intersection point on the hand mesh. Then
a cone is created with the control point as apex, the intersec-
tion point as the base center, and a base radius. The base ra-
dius is estimated by the maximum distance of vertices in the
subregion to their control point. Three generatrices equally
distributed on cone surface are selected as new ray casting
directions. We cast three rays from the control point in the
direction of the three generatrices and retrieve the intersec-
tion points with hand mesh. These intersection points will
be selected as anchors to that control point in the fingertip
regions.
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Figure 5. Illustration of the elastic energy w.r.t. a pair of hand-
object vertices.

B. Spring’s Elasticity

B.1. Elastic Energy Analysis

Here we illustrate elastic energy between a pair of points
vh
i and vo

j , denoting one vertex on hand surface and an-
other vertex on object surface respectively. The vertex on
object surface binds with a vector no

j representing the nor-
mal direction at this vertex (also the direction of repulsion).
Then we compute the offset vector ∆latrij = vh

i − vo
j , and

the projection of the offset vector on object normal no
j :

|∆lrplij | = (vh
i − vo

j ) · no
j . |∆lrplij | is positive if vh

i falls
outside the object, and negative if vh

i falls inside the object.
We use an exponential function here to provide magnitude
and gradient heuristic for optimizer: a) the less |∆lrplij | is,
the more vh

i penetrates into the object. The gradient of re-
pulsive energy will be an exponential increasing function of
∆lrplij . b) when vh

i intersects into the object, both the re-
pulsion and the attraction will push vh

i towards the surface;
when vh

i is outside the object, the attraction and repulsion
will point to opposite directions, leading to a balance point
outside but in the vicinity to the object’s surface. We pro-
vide an intuitive illustration in Fig. 5.

B.2. Anchor Elasticity Assignment

As discussed in main text §4 (Annotation of the Attrac-
tive Springs), we treat the elasticity of the attractive spring
as the network prediction. Here, we shall provide the an-
notation heuristics of the attractive spring k̂atr First, we set
the anchor ai - vertex vo

j pair with ground-truth distance
|∆l̂atrij | > 20mm as invalid contact and has k̂atrij = 0.
Second, for those anchor-vertex pairs within the distance
threshold 20 mm, an inverse-proportional k̂atrij is assigned

Figure 6. Unsuitable samples in HO3Dv2 testing set.

according to the |∆l̂atrij |:

k̂atrij = 0.5 ∗ cos
(π
s
∗ |∆l̂atrij |

)
+ 0.5 (1)

where the scale factor s = 20mm.
To note, we do not have a strict requirement on the func-

tion of k̂atrij . Any other functions should also work when
satisfying: a) k = 1 when |∆l| = 0; b) k is inverse propor-
tional to |∆l| in the range of 0 to 20 mm; c) k is bounded
by 0 and 1. The choice of cosine function is simply due to
its smoothness.

C. HO3D Dataset
C.1. Analysis and Selection

As we mentioned in the main text §6.1, several samples
in the HO3D testing set do not suit for evaluating MIHO.
Firstly, since GeO requires the predicted 6D pose of the
known objects, all the grasps of the pitcher have to be re-
moved. Secondly, many interactions of hand and objects in
the testing set are not stable. For example, sliding the palm
over the surface of a bleach cleanser bottle, may cause a
strange contact and mislead the optimization in GeO. There-
fore, we only select the grasps that can pick up the objects
firmly. We show several unsuitable samples in Fig. 6. Ta-
ble.1 shows our final selection on HO3Dv2 test set, as we
called HO3Dv2−.

Sequences Frame ID

SM1 All
MPM10-14 30-450, 585-685

SB11 340-1355, 1415-1686
SB13 340-1355, 1415-1686

Table 1. HO3Dv2− selection. We select 6076 samples in the
HO3Dv2 test set to evaluate MIHO.

C.2. Data Augmentation

We augment the training sample in HO3Dv1 in terms
of poses and grasps. a) To generate more poses, we firstly
randomize a disturbance transformation to the hand and ob-
ject poses in the object canonical coordinate system. Then,
we apply the disturbance on the hand and object meshes
and render these meshes to image by a given camera intrin-
sic. b) To generate more grasps, we fit more stable grasps
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Figure 7. HO3D [3] Dataset augmentation. We demonstrate the process of generating synthetic training images. R stands for the random
transformation.

around the object. Specifically, as we show in Fig. 7, the
generation procedure is achieved by 2 steps: 1) Manually
move the hand around the tightest bounding cuboid of the
object. 2) Refine the hand pose in the proposed GeO. Since
the attractive springs in CPF are unavailable here, we re-
place the attraction energy in main text Eq. 3 with the LA in
[6], Eq. 4, and retain the repulsion energy and the anatom-
ical cost. The optimization process of grasping generation
can be expressed as:

V̂h ←− argmin
(Pw,Rj)

(LA + Erpl. + Lanat) (2)

D. Experiments and Results
D.1. Implementation Details

In this section we provide more implementation details
about the HoNet, PiCR, and GeO module.

HoNet. The HoNet module employs ResNet-18 [7] back-
bone initialized with ImageNet [1] pretrained weights. For
FHB and HO3Dv2 dataset, we use the pretrained weights
released from [5]. For the HO3Dv1 dataset, we train the
HoNet with Adam solver and a constant learning rate of
5× 10−4 in total 200 epochs.

PiCR. The PiCR module employs a Stacked Hourglass
Networks [9] (with 2 stacks) as backbone, a PointNet [10]
as the point encoder, and three multi-layer perceptrons as
heads. The image features yield from the two hourglass
stacks are gathered together and sequentially fed into the
PointNet encoder and three heads. While the loss is com-
puted over the sum of two rounds prediction, both PointNet
encoder and the three heads have only one instance through-
out PiCR module. At the evaluation stage, we only use the
image features from the last hourglass stack to get the pre-
diction from three heads.

We train the PiCR module with two stages. 1) Pretrain-
ing. We pretrain the PiCR module with the input image
and the ground-truth object mesh in camera space. The
ground-truth object mesh are disturbed by a minor rota-
tion and translation shift. We employ Adam solver with
an initial learning rate of 1 × 10−3, decaying 50% every
100 epochs. The total epochs during pretraining stage is
200. 2) Fine-tuning. At the fine-tuning stage, we feed PiCR
module with the object vertices predicted from HoNet. The
HoNet’s weights is freezed during PiCR fine-tuning. We
employ Adam solver and set the initial learning rate in fine–
tuning stage as 5×10−4, decayed to 50% every 100 epochs,
and finished at 200 epochs. In both stages, we set the train-
ing mini-batch size to 8 per GPU, and a total of 4 GPUs are
used.

GeO. The GeO is a fitting module based on the non-linear
optimization. For each sample, we minimize the cost func-
tion in 400 iterations, with a initial learning rate of 1×10−2,
reduced on plateau that the cost function has stopped de-
caying in 20 consecutive iterations. We implement GeO in
PyTorch thanks for its auto derivative, and an Adam solver
is employed when updating the arguments. To note, GeO
can also support any other optimization toolbox.

D.2. Ablation Study

As referred in main text §6.4 (Ablation Study), this sec-
tion contains another three ablation studies. all the follow-
ing experiments are under the hand-object setting.

The Impact of the krpl. While the elasticity katr of the
attractive springs are predicted in PiCR, the elasticity krpl

of those repulsive strings are empirically set to 1×10−3. In
order to measure the impact of the magnitude of krpl on re-
pulsion, we test our GeO with seven experiment settings in
which the krpl is set to {0.2, 0.6, 1.0, 1.4, 2.0, 4.0, 8.0}×



10−3, respectively. The experiment with krpl = 1 × 10−3

is in accord with the default experiment in main text. As
shown in Tab. 2, while the large krpl can reduce the solid in-
terpenetration volume, it may also push the attraction apart
thus is not preferable in the reconstruction metrics: hand
MPVPE and object MPVPE.

krpl
Scores

HE ↓ OE ↓ PD ↓ SIV ↓ DD ↓

2.0× 10−4 19.49 21.57 17.77 13.22 20.85
6.0× 10−4 19.51 21.57 17.22 12.40 21.63
1.0× 10−3 19.54 21.57 16.92 11.76 22.41
1.4× 10−3 19.59 21.58 16.75 11.00 23.24
2.0× 10−3 19.69 21.59 16.41 10.09 24.55
4.0× 10−3 20.03 21.63 15.09 7.65 29.33
8.0× 10−3 20.95 21.92 12.86 4.27 40.79

Table 2. Ablation results: the impact of the magnitude of katr.
HE stands for hand mean per vertex position error (mm); OE
stands for object mean per vertex position error (mm); PD stands
for penetration depth (mm); SIV stands for solid intersection vol-
ume (cm3); D stands for disjointedness distance (mm).

A-MANO with PCA Pose. Since the MANO can also be
driven by the PCA components of joint rotation, we further
conduct experiments to demonstrate the superiority of our
full MANO ( MANO with 15 relative joint rotations) over
the PCA MANO (MANO with 15 PCA components of ro-
tations). Tab. 3 shows that our full MANO can achieve a
notable decrease in the hand MPVPE. We attribute this to
the fact that the PCA MANO tends to recovery a hand that
is inclined to the mean flat pose, while our full version im-
poses higher flexibility on the hand pose.

However, fitting on the 15 rotations in forms of so(3)
brings 15× 3 = 45 degree of freedoms, which is less stable
against pose abnormality. Hence in order to fully exploit
the advantages when fitting on the rotations of 15 joints, we
have to combine the anatomical constrains with it.

Settings Scores

HE ↓ OE ↓ PD ↓ SIV ↓ DD ↓

Full MANO 19.54 21.57 16.92 11.76 22.41
PCA MANO 23.32 24.41 22.47 11.90 26.72

Table 3. Ablation results: the MANO with PCA pose.

Unwanted Twist Correction. In this part, we show the
effectiveness when fitting the 15 rotations with anatomical
constrains. We observe an unwanted twist of thumb in the
ground-truth pose of HO3Dv1 testing set. As shown in Fig.
8, since A-MANO imposes constraints on the twist com-
ponent of the rotation axis, it can achieve a more visually
pleasing result in such case.

HO3D/train/MC2/rgb/0296.png

ground truth ours

Figure 8. Example to show that our A-MANO can mitigate the
unwanted twist (see thumb) exhibited in ground-truth.

E. More Qualitative Results
We demonstrate the qualitative results of MIHO in Fig.

9 on both the FHB [2] and HO3D dataset [4]. Note that the
ground truth of the test set in HO3Dv2− [4] is not available.
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Figure 9. Qualitative results on FHB [2], HO3Dv1[3] and HO3Dv2− [4] datasets. The last row shows the failure cases.


