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Figure 1. The distribution of the depth of all depth images of the
scenes rendered from the ground truth scenes (grey curve) and the
scenes generated by GAN with single-view discriminator (orange
curve) and our multi-view discriminator (blue curve).

1. The Failure of Single-View Discriminator in
3D Scene Generation

We conduct a preliminary experiment and analysis to in-
vestigate the reason behind the failure of the single-view
discriminator [3, 2] in our scene generation task.

To this end, we train our volumetric GAN model with
the Structured3D-Bedroom dataset. For each scene in the
dataset, we set the camera at the room center and 1.5m
height to the floor and render four depth images by aligning
the camera view to the +X , −X , +Y , −Y directions. We
then take these rendered images as training data for learning
our volumetric GAN model with a single-view discrimina-
tor and our multi-view discriminator separately. After that,
we generate 5,000 scenes for each network and render the
depth images with the same camera setup as the training im-
ages. For depth images of the ground truth scenes and the
scenes generated by each network, we plot the distributions
of the depth values of all images in Fig. 1. We find that
different from the 3D object modeling task in [3, 2] where
the objects in the images have similar distances to the view-
points of images, the objects can be anywhere in a room so
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Dataset Selected categories
Structured3D-Bedroom Cabinet, Bed, Chair, Picture,

Desk, Curtain, Television,
Night stand, Lamp

Structured3D-Livingroom Cabinet, Chair, Sofa, Table,
Picture, Shelves, Curtain, Lamp,
Pillow, Refrigerator, Television

Structured3D-Kitchen Cabinet, Picture, Curtain,
Refrigerator, Lamp,

Matterport3D-Bedroom Bed, Pillow, Night stand, Chair,
Picture, Lamp, Curtain, Table

NYUv2-RGB-Bedroom Cabinet, Bed, Chair, Desk,
Shelves, Curtain, Pillow,
Television, Nigh Stand, Lamp

Table 1. The object classes in each training dataset.
that the distances between the viewpoint and objects in the
scene have larger variations than the view distances between
the camera and 3D objects. For images with such large
depth variations, the differentiable ray consistency (DRC)
layer used in our network tends to drive the generator to
create scenes with more objects closer to the viewpoint with
the single-view discriminator (the orange curve in Fig. 1).
Although the generated scene is different from the GT, their
rendering matches some views in the training dataset and
thus could pass the discriminator and results in the model
collapse. With the joint-views used in our multi-view dis-
criminator, the model collapse caused by the single-view
discriminator could be avoided and the depth distribution of
the generated scene (the blue curve in Fig. 1) matches the
depth distribution of the GT scenes (the grey curve in Fig. 1)
better. One possible reason is that among all random com-
bination of training images, the percentage of combinations
in which all images in the combination are close-up views
becomes much fewer.

2. More Experimental Results
Details of Object Classes Table. 1 lists the list of the ob-
ject classes in each training dataset.

The Complete Co-Occurrence Maps Fig. 2 illustrates
the object co-occurrence maps of the GT scenes, the scenes



Figure 2. The object co-occurrence maps of all object classes of the ground truth scenes, scenes generated by GRAINS[1], and scenes
generated by our method.

Figure 3. The object co-occurrence maps of all object classes of the ground truth scenes, scenes generated by GRAINS[1], and scenes
generated by our method.

generated by our method, and the scenes generated by
GRAINS [1] for all object classes in the scene. Fig. 3 visu-
alizes the object co-occurrence maps of the GT scenes, the
scenes generated by DeepPrior[4], as well as scenes gener-
ated by our method for all object classes in the scene. These
two figures are a complete version of the co-occurrence
maps shown in the paper.

The User Interface Fig. 4 and Fig. 5 displays user inter-
face used in our user study and the user interface used in our
ablation study.

More Visual Results Here we show more images
of 3D scenes generated by our method from differ-
ent training datasets, including Structured3D-Bedroom
(Fig. 6), Structured3D-Livingroom and Structured3D-
Kitchen (Fig. 7), Matterport3D-Bedroom and NYUv2-
RGB-Bedroom (Fig. 8).
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Figure 4. The user interface of our program used in the user study.

Figure 5. The user interface of our program used in the ablation study.



Figure 6. More results generated by our method from the Structured3D-Bedroom dataset.



Figure 7. More results generated by our method from Structured3D-LivingRoom (the first three rows) and Structured3D-Kitchen (the last
three rows).



Figure 8. More results generated by our method from Matterport3D-Bedroom (the first three rows) and NYUv2-RGB-Bedroom (the last
three rows).


