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Figure 1: Network structure for PartNet Segmentation and Semantic
KITTI. The numbers of repeated resblocks are [2,2,2,2,2,2,2,2].
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Figure 2: Network structure for Scannet segmentation. The num-
bers of repeated resblocks are [2,3,4,6,2,2,2,2].
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Figure 3: Network structure for Scannet segmentation when sout =
8 cm. The numbers of repeated resblocks are [2,3,4,6,2,2].

1. Detailed Segmentation Results on PartNet

The part IOUs of all categories are listed in Tab. 1. The
results shown in the table are the average metrics and mean
deviations of three rounds. On each round, all the networks
are initialized with the same parameters.
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Figure 4: Network structure for Semantic KITTI when sout =
20 cm. It is also the network for Scannet detection, S,,: = 8 cm.
The numbers of repeated resblocks are [2,2,2,2,2,2].
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Figure 5: Network structure for Semantic KITTI when sou: =
40 cm. The numbers of repeated resblocks are [2,2,2,2,2].

2. 3D Object Detection with a Stronger Base-
line

H3DNet [5] is one of the state-of-the-art methods on
3D object detection of ScanNet. It uses the PointNet++[3]
as the backbone to extract point features and predicts geo-
metric primitives with these features, then generates object
proposals. The results of H3DNet when using one Point-
Net++ is reported in Tab. 2. After replacing the PointNet++
by a sparse-voxel-based U-Net with our interpolation-aware
sparse padding and the trilinear interpolation, we can achieve
47.1mAP@0.5, and the performance gain compared with
H3DNet is 3.4. We also observe that compared with our
own results based on VoteNet (see the 3rd row in Tab. 2), the
performance is also greatly improved, which indicates that



Group ‘ Pad. Interp. Sout mIOU Chair Lamp Stora Table

ZERO NEAR 643 40.5+0.2 46.2 £0.2 24.2+0.3 53.7+0.3 37.8+0.4

) OCTREE NEAR 643 40.0 £0.0 46.3 £ 0.2 23.7+0.1 53.4+0.2 36.7£0.2
RING NEAR 643 409+00 473+02 244401 53.8+0.1 382+0.1

INTERP NEAR 643 40.6 £ 0.1 46.9 + 0.2 24.1 +0.2 53.4+0.2 37.9+0.5

ZERO LINEAR 643 41.5+0.0 46.8 £ 0.3 28.0 £ 0.1 53.3£0.5 37.9+£0.1

@ OCTREE  LINEAR 643 41.4+£0.0 47.3+0.3 27.2+0.4 53.6 £ 0.5 37.6 £0.1
RING LINEAR 643 42.74+0.3 480+04 287+04 5444+02 39.7+04

INTERP LINEAR 643 42.3+0.3 47.6 £0.2 28.6 £0.5 54.3 £0.1 38.8£0.5

3) ZERO NEAR 323 38.1+0.2 45.1+0.2 23.0+£04 47940.1 36.3+0.2
INTERP LINEAR 323 40.1 +0.1 46.2 £ 0.1 27.3+0.3 49.7+ 0.5 37.1+0.2

Table 1: Quality statistics of fine-grained part segmentation on four PartNet categories. Pad. is the sparse padding type, Int. is the sparse

interpolation type, mloU is the average part loU

Network Pad. Int mAP@0.25 mAP@0.5
VoteNet [2] - - 578+ 0.6 34.7+04
MinkNet [1]  ZERO NEAR 58.7+0.5 37.9+0.6
Ours INTERP LINEAR 60.7 0.8 41.4+0.6
H3DNet [5] - - 64.0 £0.7 44.74+0.8
MinkNet [I] ZERO NEAR 63.6+0.4 458404
Ours INTERP LINEAR 64.44+0.2 47.1+£0.3

Table 2: Quality statistics of instance detection on the ScanNet
validation set.

with a stronger baseline, we can achieve get better results.

3. Network Structures
3.1. PartNet Segmentation

We use the U-Net structure with five levels of domain
resolution. The finest grid resolution in the network is set
to 643. The structure is shown in Fig. 1. The numbers of
repeated resblocks are [2,2,2,2,2,2.2,2].

3.2. ScanNet Segmentation

For the ScanNet Segmentation task, We use the same
U-Net structure in [ 1] with five levels of domain resolution.
The finest grid resolution in the network is set to 2 cm. The
structure is shown in Fig. 2. The numbers of repeated res-
blocks are [2,3,4,6,2,2,2,2]. When the s, is set to 8 cm, we
remove two high resolution layers in the decoder, and inter-
polate the feature from the 3rd level. The network structure
is shown in Fig. 3.

3.3. Semantic KITTI Segmentation

For Semantic KITTI Segmentation, we use the same U-
Net structure as [4]. It is same with the network shown in
Fig.1. The finest grid resolution in the network is set to 5 cm.
When the s,,; is set to 20 cm or 40 cm, we also remove the

corresponding layers in the decoder, the network structures
are shown in Fig. 4 and Fig. 5.

3.4. ScanNet Detection

For the ScanNet detection task, we follow the pipeline of
VoteNet [2], and only replace the PointNet++ with U-Net
based on the sparse-convolution. The finest grid resolution
in the network is set to 2 cm. And the s,,; is fixed as 8 cm
in this task. The U-Net structure is the same as the network
shown in Fig. 5. The numbers of repeated resblocks are
[2,2,2,2,2,2].

4. Advantage with 1-ring padding

Though the performance of the 1-ring padding is slightly
better than the interpolation-aware padding on PartNet, its
memory and computational cost are much higher, especially
on large-scale datasets such as ScanNet and KITTI. The
comparison of memory consumption with batch size as 1
is summarized in Table 3. In practice, we train the net-
work with a batch size of at least 4 due to the requirement
of Batch Normalization, otherwise, the performance may
decrease greatly. And if the 1-ring padding is used, the net-
work runs out of memory even on V100 GPU with 32GB
memory on ScanNet and KITTI, despite its potential per-
formance improvement. Our interpolation-aware padding is
more practical and provides clear improvements over previ-
ous approaches.

Padding scheme ScanNet KITTI
1-ring padding 89G 129G
Interpolation-aware padding 6.7G 6.4G

Table 3: The memory cost comparison with batch size 1.



5. Source code

Our source code is available on our project homepage:

https://yukichiii. github.io/project/padding.html, feel free to
follow the instruction in ReadMe to use our padding scheme.
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