
JEM++: Improved Techniques for Training JEM
Supplementary Material

Xiulong Yang, Shihao Ji
Department of Computer Science

Georgia State University
{xyang22,sji}@gsu.edu

1. Experimental Details
To have a fair comparison with JEM [7], all our experi-

ments are based on the Wide-ResNet architecture [19] and
follow JEM’s settings whenever possible. As we discussed
in the main text, JEM++ enables batch norm [11] and the
SGD optimizer [16] with a large learning rate, which we
find works better than Adam [12] with a very small learn-
ing rate of 1e−4 that is used by JEM. Specifically, we use
SGD with an initial learning rate of 0.1 and a decay rate
of 0.2, and train all our models for 150 epochs. We re-
duce the learning rate at epoch [50, 100, 125]. Table 1 lists
the hyperparameters of JEM++. Note that JEM++ is still
highly stable even with M = 5. More experimental de-
tails can be found in our code, which is publicly available at
https://github.com/sndnyang/JEMPP.

Table 1. Hyperparameters of JEM++ for CIFAR10

Variable Value

Number of outer steps M 5, 10
Number of inner steps N 5
Proximity constraint ε 1
Buffer size |B| 10,000
Reinitialization freq. ρ 5%
PYLD step-size α 0.2

2. Informative Initialization
In this paper, we introduce a novel informative initializa-

tion to start the SGLD chain. Specifically, instead of using
a uniform distribution, we sample from a Gaussian mixture
distribution estimated from the training data as

p0(x) =
∑

y
πyN(µy,Σy) (1)

with πy = |Dy|/
∑

y′
|Dy′ |, µy = Ex∼Dy

[x],

Σy = Ex∼Dy

[
(x− µy) (x− µy)

⊤
]
,

(a) SVHN

(b) CIFAR100

Figure 1. The categorical centers of SVHN and CIFAR100.

Plane Car Bird Cat Deer Dog Frog Horse Ship Truck

(a) Categorical centers of CIFAR10

(b) Samples from each category

Figure 2. The categorical centers of and corresponding samples of
CIFAR10.

where Dy denotes the set of training samples with label
y. Figure 1 visualizes the categorical centers (µ’s) esti-
mated from the SVHN and CIFAR100 training datasets.

https://github.com/sndnyang/JEMPP

Figure 2 visualizes the categorical centers and the corre-
sponding samples x0 ∼ p0(x) for CIFAR10. Note that no
extra information is used to train JEM++ over JEM.

3. Applications
In the main text, we compared JEM and JEM++ in terms

of classification accuacy, image quality, training stability
and speed. Here we compare JEM and JEM++ in other
downstream applications, such as adversarial robustness,
calibration and out of distribution (OOD) detection.

3.1. Robustness

It’s well known that DNNs are particularly vulnerable to
adversarial examples [18, 6] in the form of small perturba-
tions to inputs that lead DNNs to predict incorrect outputs.
Specially, the widely explored adversarial examples are de-
fined as perturbed inputs x̃ = x+δ under an Lp-norm con-
straint ∥δ∥p < ε. To overcome the security threat posed by
adversarial examples, a variety of defense algorithms have
been proposed in the past few years to improve the robust-
ness of models [5, 4, 9, 1, 13, 2]. Among them, adversarial
training [5, 13] has been proved to be the most effective one
to defend adversarial examples.

As we discussed in Section 3.1, there is a close relation-
ship between the maximum likelihood learning of EBM (7)
and adversarial training with PGD [13] as both solve a sim-
ilar minimax objective. Therefore, the maximum likelihood
trained EBMs should be more robust to adversarial exam-
ples than the standard trained softmax classifiers, and this
has been empirically verified by recent works (e.g., [3, 7]).
Since JEM++ improves JEM’s accuracy, training stability
and speed, it’s interesting to check if JEM++ can improve
model robustness as well.

(a) L∞ Robustness (b) L2 Robustness

Figure 3. Adversarial robustness under the PGD attacks.

To evaluate the robustness of a given model, we run a
white-box PGD attack [13] under an L∞ or L2 constraint
using foolbox [15], with the results reported in Figure 3. It
can be observed that JEM++ achieves a similar robustness
with JEM under the L∞ and L2 PGD attacks, while both
are more robust than the standard softmax classifiers. The
adversarial training with PGD [13, 17] achieves the highest
robustness since it is trained and test under the same PGD
attacks, while JEM/JEM++ are trained on real and gener-
ated samples from the energy function, without the access

to the PGD samples for training.

3.2. Calibration

Recent researches have shown that the predictions from
modern DNNs could be over-confident [8], i.e., they of-
ten output incorrect but confident predictions, which could
have catastrophic consequences. Hence, calibration of un-
certainty for DNNs is a critical task with an enormous prac-
tical impact nowadays. Here, the confidence is defined as
maxy p(y|x) which is used to decide when to output a pre-
diction. In this section, we compare the calibration qualities
of models trained by JEM and JEM++ as well as the stan-
dard softmax classifiers on the CIFAR10/100 dataset.

Expected Calibration Error (ECE) is a standard met-
ric to evaluate the calibration quality of a classifier [8]. It
firstly computes the confidence of the model, maxy p(y|xi),
for each xi in the dataset. Then it groups the predictions
into equally spaced buckets {B1, B2, · · · , BM} based on
the confidence scores. For example, if M = 20, then B1

would represent all examples for which the model’s confi-
dence scores were between 0 and 0.05. Then ECE is calcu-
lated as

ECE =

M∑
m=1

|Bm|
n

|acc (Bm)− conf (Bm)| , (2)

where n is the number of data in the dataset, acc(Bm) is the
average accuracy of the model on all the examples in Bm

and conf(Bm) is the average confidence on all the examples
in Bm. In our experiments, we set M = 20. For a perfectly
calibrated model, the ECE will be 0 for any M .

Figures 4 and 5 report the results on CIFAR10 and CI-
FAR100, respectively. As we can see, the models trained
by JEM and JEM++ are better calibrated than the standard
softmax classifiers, while JEM++ achieves better calibra-
tion qualities than JEM on CIFAR10 (2.35% vs. 4.2%) and
CIFAR100 (3.3% vs. 4.87%) with notable margins.

3.3. Out-Of-Distribution Detection

The OOD detection is a binary classification problem,
which outputs a score sθ(x) ∈ R for a given query x.
The model should be able to assign lower scores to OOD
examples than to in-distribution examples, such that it can
be used to distinguish two sets of examples. Following the
settings of JEM [7], we use the Area Under the Receiver-
Operating Curve (AUROC) [10] to evaluate the perfor-
mance of OOD detection. In our experiments, two standard
score functions are considered: the input density pθ(x) [14]
and the predictive distribution pθ(y|x) [10].

Input Density A natural choice of sθ(x) is the input den-
sity pθ(x). For OOD detection, intuitively we consider ex-
amples with low p(x) to be OOD. Quantitative results can

(a) Standard Softmax (b) JEM (K=20)

(c) JEM++ (M=5) (d) JEM++ (M=10)

Figure 4. Calibration results on CIFAR10. The smaller ECE is, the
better.

(a) Standard Softmax (b) JEM (K=20)

(c) JEM++ (M=5) (d) JEM++ (M=10)

Figure 5. Calibration results on CIFAR100. The smaller ECE is,
the better.

be found in Table 2 (top row), where CIFAR10 is the in-
distribution data and SVHN, an interpolated CIFAR10, CI-
FAR100 and CelebA are treated as out-of-distribution data,
respectively. Moreover, the corresponding distributions of
scores are visualized in Table 3. As can be seen, the JEM++
model assigns higher likelihoods to in-distribution data than
to the OOD data, outperforming JEM and all the other mod-
els by significant margins.

Predictive Distribution Another useful OOD score is the
maximum probability from a classifier’s predictive distribu-
tion: sθ(x) = maxy pθ(y|x). Hence, OOD performance
using this score is highly correlated with a model’s classifi-

cation accuracy. The results can be found in Table 2 (bottom
row). Again, JEM++ outperforms JEM and all the other
models by notable margins.

4. Additional Generated Samples
Additional JEM++ generated samples of SVHN and CI-

FAR100 are provided in Figure 6. Additional JEM++ gen-
erated class-conditional (best and worst) samples of CI-
FAR10 are provided in Figures 7-16. It is worth noting
that the worst images (the lowest p(x) or p(y|x)) generated
by JEM++ are more visually appealing than JEM generated
(see examples in the Appendix of JEM [7]).

(a) SVHN (Conditional) (b) CIFAR100 (Conditional)

Figure 6. JEM++ generated class-conditional samples of SVHN
and CIFAR100. Each row corresponds to one class.

References
[1] Naveed Akhtar, Jian Liu, and Ajmal Mian. Defense against

universal adversarial perturbations. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2018. 2

[2] Ping-yeh Chiang, Renkun Ni, Ahmed Abdelkader, Chen
Zhu, Christoph Studer, and Tom Goldstein. Certified de-
fenses for adversarial patches. In ICLR 2020, 2020. 2

[3] Yilun Du and Igor Mordatch. Implicit generation and gen-
eralization in energy-based models. In Advances in Neural
Information Processing Systems (NeurIPS), 2019. 2

[4] Gintare Karolina Dziugaite, Zoubin Ghahramani, and
Daniel M Roy. A study of the effect of jpg compression on
adversarial images. arXiv preprint arXiv:1608.00853, 2016.
2

[5] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and harnessing adversarial examples. In Inter-
national Conference on Learning Representations (ICLR),
2015. 2

[6] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and harnessing adversarial examples. In Interna-
tional Conference on Learning Representations, 2015. 2

[7] Will Grathwohl, Kuan-Chieh Wang, Joern-Henrik Jacobsen,
David Duvenaud, Mohammad Norouzi, and Kevin Swer-
sky. Your classifier is secretly an energy based model and
you should treat it like one. In International Conference on
Learning Representations (ICLR), 2020. 1, 2, 3

Table 2. OOD detection results. Models are trained on CIFAR10. Values are AUROC.
sθ(x) Model SVHN CIFAR10 Interp CIFAR100 CelebA

log pθ(x)

Uncond Glow .05 .51 .55 .57
IGEBM .63 .70 .50 .70

JEM (K=20) .67 .65 .67 .75
JEM++ (M=5) .89 .73 .81 .74

JEM++ (M=10) .63 .68 .64 .59
JEM++ (M=20) .85 .57 .68 .89

maxy pθ(y|x)

WideResNet .93 .77 .85 .62
IGEBM .43 .69 .54 .69

JEM (K=20) .89 .75 .87 .79
JEM++ (M=5) .88 .78 .86 .78

JEM++ (M=10) .91 .78 .88 .82
JEM++ (M=20) .94 .77 .88 .90

JEM

cifar10
svhn

cifar10
cifar100

cifar10
celeba

JEM++(M=5)

cifar10
svhn

cifar10
cifar100

cifar10
celeba

JEM++(M=10)

cifar10
svhn

cifar10
cifar100

cifar10
celeba

JEM++(M=20)

cifar10
svhn

cifar10
cifar100

cifar10
celeba

Table 3. Histograms of logθ p(x) for OOD detection. Green corresponds to in-distribution dataset, while red corresponds to OOD dataset.

(a) Samples with highest p(x) (b) Samples with lowest p(x) (c) Samples with highest p(y|x) (d) Samples with lowest p(y|x)

Figure 7. JEM++ generated class-conditional samples of Plane

(a) Samples with highest p(x) (b) Samples with lowest p(x) (c) Samples with highest p(y|x) (d) Samples with lowest p(y|x)

Figure 8. JEM++ generated class-conditional samples of Car

(a) Samples with highest p(x) (b) Samples with lowest p(x) (c) Samples with highest p(y|x) (d) Samples with lowest p(y|x)

Figure 9. JEM++ generated class-conditional samples of Bird

(a) Samples with highest p(x) (b) Samples with lowest p(x) (c) Samples with highest p(y|x) (d) Samples with lowest p(y|x)

Figure 10. JEM++ generated class-conditional samples of Cat

(a) Samples with highest p(x) (b) Samples with lowest p(x) (c) Samples with highest p(y|x) (d) Samples with lowest p(y|x)

Figure 11. JEM++ generated class-conditional samples of Deer

(a) Samples with highest p(x) (b) Samples with lowest p(x) (c) Samples with highest p(y|x) (d) Samples with lowest p(y|x)

Figure 12. JEM++ generated class-conditional samples of Dog

(a) Samples with highest p(x) (b) Samples with lowest p(x) (c) Samples with highest p(y|x) (d) Samples with lowest p(y|x)

Figure 13. JEM++ generated class-conditional samples of Frog

(a) Samples with highest p(x) (b) Samples with lowest p(x) (c) Samples with highest p(y|x) (d) Samples with lowest p(y|x)

Figure 14. JEM++ generated class-conditional samples of Horse

(a) Samples with highest p(x) (b) Samples with lowest p(x) (c) Samples with highest p(y|x) (d) Samples with lowest p(y|x)

Figure 15. JEM++ generated class-conditional samples of Ship

(a) Samples with highest p(x) (b) Samples with lowest p(x) (c) Samples with highest p(y|x) (d) Samples with lowest p(y|x)

Figure 16. JEM++ generated class-conditional samples of Truck

[8] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger.
On calibration of modern neural networks. In International
Conference on Machine Learning (ICML), 2017. 2

[9] Chuan Guo, Mayank Rana, Moustapha Cisse, and Laurens
Van Der Maaten. Countering adversarial images using input
transformations. arXiv preprint arXiv:1711.00117, 2017. 2

[10] Dan Hendrycks and Kevin Gimpel. A baseline for detect-
ing misclassified and out-of-distribution examples in neural
networks. In International Conference on Learning Repre-
sentations(ICLR), 2016. 2

[11] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. In International Conference on Machine Learn-
ing (ICML), 2015. 1

[12] Diederik Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In International Conference on
Learning Representations (ICLR), 2015. 1

[13] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,
Dimitris Tsipras, and Adrian Vladu. Towards deep learn-
ing models resistant to adversarial attacks. In International
Conference on Learning Representations (ICLR), 2018. 2

[14] Eric Nalisnick, Akihiro Matsukawa, Yee Whye Teh, Di-
lan Gorur, and Balaji Lakshminarayanan. Do deep gener-
ative models know what they don’t know? arXiv preprint
arXiv:1810.09136, 2018. 2

[15] Jonas Rauber, Wieland Brendel, and Matthias Bethge. Fool-
box: A python toolbox to benchmark the robustness of ma-

chine learning models. arXiv preprint arXiv:1707.04131,
2017. 2

[16] Herbert Robbins and Sutton Monro. A stochastic approxima-
tion method. The Annals of Mathematical Statistics, 1951. 1

[17] Shibani Santurkar, Andrew Ilyas, Dimitris Tsipras, Logan
Engstrom, Brandon Tran, and Aleksander Madry. Image
synthesis with a single (robust) classifier. In Advances in
Neural Information Processing Systems (NeurIPS), 2019. 2

[18] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan
Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus. In-
triguing properties of neural networks. In International Con-
ference on Learning Representations (ICLR), 2014. 2

[19] Sergey Zagoruyko and Nikos Komodakis. Wide residual net-
works. In The British Machine Vision Conference (BMVC),
2016. 1

