
SAT: 2D Semantics Assisted Training for 3D Visual Grounding
(Supplementary Material)

In the first part of the supplementary material, we present
additional ablation studies and detailed result analyses. In
the second part, we extend our SAT approach to detector-
generated 3D proposals. We also discuss how 3D proposal
quality influences the 3D grounding accuracy.

A. Experiments
A.1. Ablation studies

Training objectives. We conduct ablation studies on the
training objectives introduced in the main paper’s Eq. 2.
Table A shows the experiments on the Nr3D dataset with
ground truth proposals. Same as SAT, all compared meth-
ods take extra 2D inputs in the training stage and do not
require extra inputs in inference.

Row (b) shows the baseline grounding accuracy with the
main 3D grounding loss LO

VG and classification loss Lcls

only. Despite input to the model during the training, 2D
semantics I does not affect the main model (Q and O) in
this baseline, as I is not attended to and no I-related aux-
iliary losses are included. Therefore, row (b) is equivalent
to the main paper’s non-SAT baseline and shows a compa-
rable accuracy of 38.0%. SAT’s auxiliary objectives of 2D
grounding loss LI

V G and object correspondence loss Lcor

improve the accuracy to 38.5% and 44.9%, respectively, as
shown in rows (c,d). Our proposed SAT jointly applies the
two auxiliary objectives and achieves the best accuracy of
49.2%. Furthermore, we find classification loss Lcls help-
ful to both the baseline and the final SAT model, as shown
in rows (a,b) and rows (e,f), respectively.

A.2. Performance breakdown

In this subsection, we show the performance breakdown
on the Nr3D [1] dataset to better understand SAT’s improve-
ment. We report SAT’s performance on subsets with dif-
ferent target object classes, numbers of distractors, query
lengths/types, spatial relationships, etc. We observe that
SAT effectively utilizes the 2D semantics to learn better
3D object representations, and obtains consistent improve-
ments on these subsets.
Numbers of distractors. Table B shows the performance
on subsets with different numbers of distractors. We com-

Table A. Ablation studies on the training objectives in the main
paper’s Eq. 2. Experiments are conducted on the Nr3D dataset
with ground truth proposals. We highlight “SAT” by underline.

LO
cls + L

Q
cls LI

V G Lcor Acc.
(a) - - - 33.8±0.1%
(b) 3 - - 38.0±0.3%
(c) 3 3 - 38.5±0.3%
(d) 3 - 3 44.9±0.2%
(e) - 3 3 46.0±0.2%
(f) 3 3 3 49.2±0.3%

Table B. Grounding accuracy on Nr3D’s subsets with different
numbers of distractors.

Overall 2 3 4 5 6
Percent(%) 100.0 49.0 21.2 15.9 8.4 5.5
non-SAT 37.6 44.4 36.8 25.5 28.8 28.0
SAT 49.0 56.3 48.0 38.6 40.1 30.6

Table C. Grounding accuracy on Nr3D’s subsets with different
query lengths.

Overall 2-6 7-8 9-10 11-13 14+
Percent(%) 100.0 21.0 20.5 19.8 17.5 21.2
non-SAT 37.6 44.2 38.5 36.8 35.7 32.4
SAT 49.0 54.8 52.1 49.4 46.3 41.8

pare non-SAT with our SAT in the bottom part of the ta-
ble. Intuitively, we observe a performance decrease when
there exist more distractors in the scene, e.g., SAT’s accu-
racy drops from 56.3% to 30.6% when the distractor num-
ber increases from 2 to 6. On the other hand, the relative
improvement of SAT over the non-SAT baseline is consis-
tent on subsets with different numbers of distractors.
Numbers of query words. We also examine the influ-
ence of query length on the grounding performance to bet-
ter understand the model’s performance in modeling lan-
guage queries. Table C split Nr3D into five sub-sets that
are roughly the same size based on query lengths. The
results show that longer queries more challenging in gen-
eral. Therefore, the grounding accuracy decreases on longer
queries, e.g., from 54.8% to 41.8%, when the query length
increase from less than 6 words to more than 14 words.
Overall, SAT consistently improves the non-SAT accuracy
on different subsets.



Table D. Grounding accuracy on Nr3D’s subsets with different target object classes.
Overall chair table window door trash can pillow monitor box shelf picture cabinet

Percent(%) 100.0 10.9 7.2 6.1 5.9 5.8 4.1 4.1 3.4 3.2 3.2 3.1
Avg. #points (K) 3.1 2.2 4.7 4.2 3.7 1.3 0.7 1.2 0.9 7.1 1.8 4.5
Avg. #distractors 3.0 3.6 3.5 2.6 2.6 2.9 3.6 3.9 3.1 2.6 3.0 2.7
non-SAT 37.6 30.7 43.2 39.2 34.7 40.0 41.7 38.8 33.5 38.8 44.7 38.3
SAT 49.0 45.9 52.0 54.9 44.6 53.5 51.1 54.7 40.6 42.1 54.0 53.0

Table E. Grounding accuracy on Nr3D’s subsets with different spatial referring keywords in language queries.
Overall with spatial w/o spatial closest next to on the left on the right corner fa(u)rthest

Percent(%) 100.0 76.7 23.3 14.2 8.4 5.4 5.4 5.1 5.0
SAT 49.0 48.4 50.9 49.5 47.4 56.3 48.1 43.8 37.8
SAT w/ Sr3D+ 56.4 56.8 54.8 61.0 56.1 62.6 58.0 53.8 51.3

Target’s object class. Table D shows the performance on
subsets with different target object classes. The upper part
of the table shows the percentage of samples in each sub-
set and the subsets’ average number of points/distractors.
The bottom part compared non-SAT with SAT on different
subsets. Overall, we observe consistent improvements on
subsets with different target object classes.
Query spatial relationships. As overviewed in the main
paper’s Section 6.3, training with Sr3D/Sr3D+ mainly ben-
efits the queries with spatial relationship referring. We man-
ually collect the spatial relationship keywords in Nr3D and
show the grounding accuracy on each generated subsets. On
the left part of Table E, we show the overall performance on
the subset with and without spatial relationship referring.
We find 76.7% of the queries contain at least one spatial
relationship keyword, while the remaining samples do not
use spatial referring. On the subset with spatial keywords,
the extra Sr3D+ training data leads to an 8.4% improve-
ment on “SAT-Nr3D” from 48.4% to 56.8%. In contrast,
the improvement is only 3.9% on the remaining samples.
The right part of Table E compares the performance on
subsets with specific spatial keywords. We observe larger
improvements on the frequently appeared spatial keywords
in Sr3D/Sr3D+. For example, the accuracy improves from
49.5% to 61.0% on the keyword “closest,” and from 37.8%
to 51.3% on the keyword “farthest/furthest.”

B. SAT with detector-generated proposals
In the main paper, we focus on the ground truth pro-

posal setting where we assume the access to M ground-
truth object point cloud segments as 3D proposals [1]. SAT
is compatible with the setting that uses detector-generated
proposals [2]. In this section, we present one implemen-
tation of extending SAT with detector-generated proposals.
We benchmark our approach on the ScanRef dataset [2].

B.1. Method

We obtain M 3D proposals and their feature O with a
3D object detector [5]. It is computationally expensive to
project the 3D proposals in each iteration to get the corre-

sponded 2D semantics. Instead, we use the same method in-
troduced in the main paper’s Section 3.2 to cache the ground
truth 2D image semantics I . The object correspondence
between detector-generated 3D proposals Om and ground-
truth 2D semantics In does not naturally exist as in the
ground truth 3D proposal experiments. To get the 3D-2D
object correspondence in the training stage, we compute the
3D IoU between the generated proposals m and the ground
truth boxes n (corresponded to 2D semantics In) and pair
3D proposals with 2D semantics online by selecting the pair
with the maximum IoU. We do not apply the object corre-
spondence loss on the pairs with an IoU less than 0.5. With
the IoU computation conducted online in each epoch, our
implementation supports the end-to-end optimization of the
entire framework.

B.2. Experiment results

Table F shows experiment results on the ScanRef
dataset [2]. The upper part of the table contains methods
that do not require extra 2D inputs in inference, and the bot-
tom part includes methods that use 2D semantics in both
training and inference. The “unique” subset contains sam-
ples that do not have distracting objects with the same ob-
ject class as the target. The remaining samples belong to
the “multiple” subset. We note that one previous study [7]
simplifies the grounding problem by filtering out proposals
that are not in the same object class as the target. We refer
to such filtered 3D proposals as “(Filt.)” in the “propos-
als” column. Consequently, methods with filtered propos-
als show better performances on the “Unique” subset, which
contains no distracting object in the same class as the target.
The drawback is that the external object label information
is required to perform such filtering.

We focus on the metrics in the “multiple” subset,
which best indicates the models’ performance of 3D visual
grounding [1]. We draw two major conclusions. 1) SAT
significantly outperforms the non-SAT baseline by effec-
tively utilizing the 2D semantics in the training stage (SAT:
37.64% and 25.16%, non-SAT: 31.81% and 21.34%). 2)
SAT outperforms the state of the art [7, 3] by large mar-



Table F. 3D visual grounding accuracy on ScanRef [2] with detector-generated proposals. The upper part shows results that do not require
extra input in inference, and the bottom part shows methods that use extra inputs. We highlight the best performance that does not use 2D
inputs by bold. The “unique” subset contains samples with no distracting objects, and the remaining samples are in the “multiple” subset.
“(Filt.)” in the “proposals” column indicates that 3D proposals are first filtered by the object class such that the model only needs to select
from the proposals in the same class as the target. “(Filt.)” simplifies the grounding problem by using the external object label information.

Extra
Proposals

Unique Multiple Overall
2D input Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5

(a) ScanRef [2] 7 VoteNet 60.54% 39.19% 26.95% 16.69% 33.47% 21.06%
(b) IntanceRefer [7] 7 PointGroup (Filt.) 77.13% 66.40% 28.83% 22.92% 38.20% 31.35%
(c) Non-SAT 7 VoteNet 68.48% 47.38% 31.81% 21.34% 38.92% 26.40%
(d) SAT (Ours) 7 VoteNet 73.21% 50.83% 37.64% 25.16% 44.54% 30.14%
(e) One-stage [6] 3 None 29.32% 22.82% 18.72% 6.49% 20.38% 9.04%
(f) ScanRef [2] 3 VoteNet 63.04% 39.95% 28.91% 18.17% 35.53% 22.39%
(g) TGNN [3] 3 3D-UNet 68.61% 56.80% 29.84% 23.18% 37.37% 29.70%
(h) IntanceRefer [7] 3 PointGroup (Filt.) 75.72% 64.66% 29.41% 22.99% 38.40% 31.08%

gins (SAT: 37.64% and 25.16%, InstanceRefer: 28.83%
and 22.92%). The significant improvements over the non-
SAT baseline and the state of the art indicate the effective-
ness of our approach in 3D visual grounding.

Furthermore, the state-of-the-art methods [3, 7] find it
helpful to replace VoteNet with other proposal generation
methods, such as 3D-UNet or PointGroup [4]. We discuss
the influence of the proposal quality in Section B.3.

B.3. Discussion

3D proposal quality. When experimented with the
detector-generated 3D proposals, the final grounding accu-
racy is influenced by two factors, i.e., the quality of gener-
ated proposals and the main grounding objective of point-
cloud-language modeling. We observe that the current 3D
proposal quality is still somewhat limited. When using
VoteNet [5] for proposal generation, ScanRef reports an
oracle Acc@0.5 of 54.33%, where the best proposal is se-
lected as the final prediction. Because of the imperfect pro-
posal quality, previous studies [3, 7] find it effective to boost
the grounding accuracy by simply replacing proposal gen-
eration methods [3, 4].

Despite the large influence of proposal quality on
grounding accuracy, we argue that the point-cloud-language
joint representation learning is the core problem of 3D vi-
sual grounding. We expect the fast-growing 3D object de-
tection studies to bring stronger detectors in the future,
which alleviates the proposal quality problem. Therefore, in
this study, we focus on the unique joint representation learn-
ing problem in 3D visual grounding, and evaluate methods
with the metrics that best reflect the models’ grounding per-
formance. Specifically, we focus on “accuracy” when ex-
perimented with ground truth proposals, and the “multiple”
accuracy when experimented with detector-generated pro-
posals. For the former, SAT surpasses the state of the art
by large margins on Nr3D (+10.4% in absolute accuracy)
and Sr3D [1] (+9.9%). Similarly on ScanRef, SAT-GT
achieves an Acc@0.5 of 66.01%, surpassing the state of the

art by large margins (ScanRef-GT: 40.06%, InstanceRef-
GT: 55.37%). For the latter, SAT significantly outperforms
the state of the art as shown in Table F’s “multiple” column.
In summary, SAT effectively uses 2D semantics to assist 3D
visual grounding and sets the new state of the art on multi-
ple 3D visual grounding datasets.
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