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Our supplementary material provides details of the func-
tions in prior modeling and joint hyperparameter optimiza-
tion in Section 1, additional details on datasets and network
architecture in Section 2, as well as more experiment results
and analysis in Section 3.

1. Details of Modeling the Objective Function
for Synchronization

1.1. GGMM in Prior Modeling

We mainly focus on translation when modeling the prior
Pc(av) and P(c,c′)(φ(av,av′)) because we notice that the
rotation and size predicted by the network are accurate and
can be directly utilized in synchronization. We model the
prior for each dimension of the translation separately. A
6-component GMM is utilized to model Mµc

(av) for each
class.
P(c,c′)(φ(av,av′)) is modeled by an 8-component GMM

multiplied by a mask which equals to one when objects of
class c and class c′ could penetrate (e.g., a chair and a desk)
and I(c,c′)(av,av′) otherwise, where

I(c,c′)(av,av′) = exp(max{0, sv + sv′

2
− |tv′ − tv|})

(1)

We use a 2-component GMM to fit Pc(zVc) and a 4-
component GMM to fit P(c,c′)(zVc

, zVc′ ).
Figure 1 shows an example of the distribution of transla-

tion. Figures 3 and 4 show examples of the distribution of
numbers of objects.

1.2. Joint Hyperparameter Optimization

The regularization term l(Φ) is designed to learn hyper-
parameters of the prior distribution from the training set
Ttrain := {tVc , tE(c,c′)}, where tVc collects absolute trans-
lation of vertices belonging to the class c, tE(c,c′) collects
relative translation of vertex pairs belonging to class c and
c′. To learn the translation prior term, we utilize l1(Φ) based

Figure 1: Distribution of translation in the SUNCG dataset.
Top: absolute translation of the bed. Middle: absolute
translation of the stand. Bottom: relative translation between
the bed and the stand. Left: x coordinates. Right: y
coordinates.

on maximum likelihood estimation:

l1(Φ) =−
∑
c∈C

∑
tv∈tVc

logMµc(tv)

−
∑
c,c′∈C

∑
te∈tE

(c,c′)

logMµ(c,c′)(te)

For object count prior, we first compute the discrete
distribution pc and p(c,c′) from the dataset. Here

pc(i) = nc,i/nscenes, i ∈ {0, 1, · · · , Nc}
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Figure 2: Architecture of the relative attribute prediction network.

Figure 3: Modeling Pc(zVc) with GMM in the SUNCG
bedroom dataset. Left: the bed. Right: the stand. From the
statistical distribution, it is most likely that there exist 1 bed
and 2 stands in each scene.

Figure 4: Modeling P(c,c′)(zVc , zVc′ ) with GMM in the
SUNCG bedroom dataset. Left: the stand and the table lamp.
It is most likely that the number of stands and that of table
lamps are equal, i.e. they co-exist. Right: the window and
the curtain.

where nscenes is the total number of scenes, and nc,i is the
total number of scenes with i objects of class c. Likewise,

pc,c′(i, j) = nc,c′,i,j/nscenes, i, j ∈ {0, 1, · · · , Nc}

where nc,c′,i,j is the number of scenes with i objects of

class c and j objects of class c′. Then we fit the discrete
distribution with continuous function using least square:

l2(Φ) =
∑
c∈C

∑
{(i,pc(i))}

‖Mγc(i)− pc(i)‖2+

∑
c,c′∈C

∑
{((i,j),p(c,c′)(i,j))}

‖Mγ(c,c′)((i, j))− p(c,c′)(i, j))‖
2

(2)

The total regularization term:

l(Φ) = l1(Φ) + l2(Φ) (3)

2. Dataset and Network Architecture

2.1. Preprocessing of Datasets

For the 3D-FRONT dataset, we select two scene types:
bedroom (Bedroom, MasterBedRoom and SecondBedRoom)
and living room (LivingRoom and LivingDivingRoom). We
fisrt filter out scenes with width and length larger than 8
meters. Then for bedroom and living room, we remove
scenes whose number of objects is smaller than 6 and 4
respectively. Finally, for both scene types, we randomly
sample 4000 scenes for training and about 100 scenes for
validation. For the SUNCG dataset, we perform joint scene
alignment following [2] and use 1000 scenes for validation.

2.2. Network Architecture Details

The network architecture for the relative attribute predic-
tion module is shown in Figure 2. Every pair of absolute
attributes a0

v and a0
v′ is concatenated as input to the network.

The network outputs the refined relative attributes.



Figure 5: Distributions of relative translation in the 3D-FRONT dataset. Top: distribution of the training data. Middle:
distribution derived from predicted absolute parameters. Bottom: distribution derived from the optimized absolute parameters
after synchronization.

Figure 6: Left: output of the prediction module. Middle:
scene optimization without using relative attribute predic-
tions. Right: full pipeline. The relation between the bed and
the nightstand, the TV and the TV stand are more realistic
when utilizing the relative attributes in scene optimization.

3. More Experimental Results and Analysis
3.1. Visual Comparisons between Our Method and

Baseline Approaches
Figure 8 and Figure 9 show more visual comparisons

between our approach and baseline approaches. We can see
that our approach generates more reasonable scenes than the
baselines.

3.2. More Analysis on Distribution of Relative
Attributes

Figure 5 shows the distributions of relative translation in
the 3D-FRONT dataset. Again we can see the improvements
of relative translation, which benefit from incorporating
predicted relative attributes and prior modeling.

3.3. Importance of Utilizing Relative Attributes
Figure 6 shows the comparison between scene optimiza-

tion with/without utilizing relative attributes. We can see

Figure 7: Comparison between off-the-shelf scene optimiza-
tion techniques. Left: output of the prediction module.
Middle: scene optimization using off-the-shelf techniques.
Right: our method.

from the results that merely using prior distribution for
optimization easily gets stuck in local minimums and can
not improve the relative position well.

3.4. Comparison between Off-the-shelf Scene Opti-
mization Techniques

Figure 7 shows the comparison between our approach
and off-the-shelf techniques [1]. Given the same initial
scene, both approaches can achieve reasonable arrangements.
However, by incorporating the prior distribution and relative
attributes into the optimization pipeline, our approach can
remove redundant objects (e.g. the laptop on the TV stand)
and add diverse objects (e.g. the chair and the cabinet).
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Figure 8: Scene synthesis results between ours and baseline methods. For each dataset, the first row: our results, the second
row: baseline methods. For baseline methods, from left to right: D-Prior, Fast, PlanIT, GRAINS, D-Gen.
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Figure 9: Scene synthesis results between ours and baseline methods. For each dataset, the first row: our results, the second
row: baseline methods. For baseline methods, from left to right: D-Prior, Fast, PlanIT, GRAINS, D-Gen.


