
Supplementary Materials for
Self-Supervised Cryo-Electron Tomography Volumetric Image Restoration from

Single Noisy Volume with Sparsity Constraint

Zhidong Yang1,2,3, Fa Zhang1,∗, Renmin Han2,*

1High Performance Computer Research Center, ICT, CAS
2Research Center for Mathematics and Interdisciplinary Sciences, Shandong University

3University of Chinese Academy of Sciences

Content
This supplementary material provides the following contents:
• Proof of preliminaries on noise model from 2D projection to 3D volumetric image (Section 1).
• The sources of datasets (Section 2).
• Measures used in simulated experiment (Section 3).
• Visual demonstration rule of the 3D volumes (Section 4).
• 3D visualization of the three simulated datasets in article (Section 5.1).
• 3D visualization of the four real-world datasets in article (Section 5.2).
• Additional ablation study on Lsmooth (Section 5.3).

1. Proof of Preliminaries
1.1. Fourier-Slice Theorem for 3D Reconstruction

If ϕ(x), where x = (x, y, z)T , represents a spatial potential function defined in R3
n and ϕRn(x) = ϕ(R−1n x) represents

the spatial state of object ϕ(x) rotated from the coordinate system x− y − z by a rotation matrix Rn, then the projection of
the object along z-axis is given by

PRnϕ(x, y) =

∫ ∞
−∞

ϕRn
(x, y, z)dz. (1)

The 2D Fourier transform of PRnϕ can be calculated as

PRnϕ(µ, v) =

∫∫ ∞
−∞

PRnϕ(x, y)e
−j2π(µx+vy)dxdy. (2)

If ΦRn(µ, v, w) denotes the 3D Fourier transform of ϕRn , the Fourier-slice theorem [1] is given as

PRnϕ(µ, v) = ΦRn
(µ, v, 0). (3)

Thus, given Φ̂Rn
(w) = ΦRn

(R−1n w) with w = (µ, v, 0)T measured with different Rn, n = 0, · · · , N − 1, we can
reconstruct ϕ(x, y, z) by inverse Fourier transform∫∫∫ ∞

−∞

N−1∑
n=0

Φ̂Rn(µ, v, w)e
j2π(µx+vy+wz)dµdvdw. (4)
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1.2. Noise model from 2D projection to 3D volume

Obviously, the Fourier-slice theorem also works in discrete condition. To simply the discussion, we assume that a projec-
tion image In(x, y) in cryo-ET is a discrete observation of the projection PRnϕ(x, y) (assume it has been discretized) with
additive Gaussian noise N(x, j), i.e. In = PRnϕ + Nn. Consequently, the Fourier transform (F) of projection image In
can be defined as F(In) = PRnϕ+F(Nn). We can draw a conclusion that The additive Gaussian noise in 2D projection
remains as Gaussian noise in 3D reconstruction.

The proof of this Lemma is divided into two stages. We need to firstly prove that The discrete Fourier transform of
Gaussian noise is still a Gaussian process.

Lemma 1. The discrete Fourier transform of Gaussian noise is still a Gaussian process.
Proof. Given random signals X = {xn ∼ N(0, σ2)} with probability density Pxn

(x) = Gσ(x), the discrete Fourier
transform of {xn} are defined as

Xk =

N−1∑
n=0

[xn cos(2πnk/N)− jxn sin(2πnk/N)]. (5)

Considering the symmetry, in the following, we only discuss the real part of Xk. Letting yn = xn cos(2πnk/N), we have
RXk =

∑N−1
n=0 yn. Obviously, Y = cn,k · X with cn,k = cos(2πnk/N). The probability density of Y can be written as

Pyn(y) =
1

cn,k
Gσcn,k

( y
cn,k

), and the probability density ofRXk becomes

PRXk
(x) = (Gσc0,k ⊗Gσc1,k · · · ⊗GσcN−1,k

)(x). (6)

Applying Fourier transform to Equation 6, we have

F(PRXk
)(v) =

N−1∏
n=0

F(Gσcn,k
)(v) =

N−1∏
n=0

G1/(σcn,k) (7)

=

N−1∏
n=0

(σ2c2n,k
2π

) 1
2

exp

(
−v2

2/σ2c2n,k

)
= C · exp

[
−v2σ2

2

N−1∑
n=o

cos(
2πnk

N
)2

]
,

where C =
(
σ2

2π

)N
2
(∏N−1

n=0 cn,k

)
is a constant, and

∑N−1
n=o cos( 2πnkN )2 = N

2 . Consequently,

F(PRXk
) ∝ exp

(
−v2σ2

2
· N
2

)
= G(2/σ2N)1/2 , (8)

and we get PRXk
= F−1(G(2/σ2N)1/2) = G

σ
√
N/2

.
Here, we could get the similar conclusion for PIXk

and so for PXk
. Therefore, Xk is still a Gaussian process.

Lemma 2. The additive Gaussian noise in 2D projection remains as Gaussian noise in 3D reconstruction.
Proof. Given the observed projection {Ii} and its corresponding rotation matrix {Ri}, we haveF(In)(µ, v) = PRnϕ(µ, v)+
F(Nn)(µ, v) for all n = 0, · · · , N − 1, where PRnϕ(µ, v) = ΦRn

(µ, v, 0).
Thus, given În(w) = F(In)(R−1n w) with w = (µ, v, 0)T , we will have În(w) = Φ̂Rn

(w) + N̂n(w), where N̂n(w) is
a 3D Fourier transform defined on a spatial plane with values same as F(Nn)(µ, v) but rotated from the x− y plane by Rn.
Consequently, a volumetric image can be reconstructed from {În} as1

V (x) = F−1
(
N−1∑
n=0

În

)
= F−1

[
N−1∑
n=0

(
Φ̂Rn + N̂n

)]
(9)

= Φ(x) + F−1
(
N−1∑
n=0

N̂n

)
1Here, the interpolation process has been ignored for the convenience of discussion.



where Φ(x) is the discrete version of ϕ(x). Here, it should be found that
∑N−1
n=0 N̂n is composed of Gaussian random

variables and so thus for its F−1. Therefore, we have

V (x) = Φ(x) +N(x), (10)

where V (x), Φ(x) and N(x) are all defined in R3.
In conclusion, for additive noise, the noise modeling in 3D volume remains stable as in 2D projections. So that our SC-Net

can directly accept a 3D volumetric image as input for training under such assumption.

2. Sources of Datasets
Real-world datasets. The first two datasets and the fourth dataset Vesicle, Mitochondria and VEEV are provided by

the Institute of Biophysics, Chinese Academy of Sciences. The third dataset Centriole is downloaded from IMOD tutorial
(http://bio3d.colorado.edu/imod/files/tutorialData-1K.tar.gz).

3. Metrics in Simulated Experiment
PSNR and SSIM are selected as measures for our evaluations in simulated experiment. Eq.11 and Eq.12 give the mathe-

matical formulations of PSNR and SSIM, respectively.

PSNR
(
Ṽ ,V g

)
= 20 log10

(
MAXI

MSE

)
(11)

SSIM
(
Ṽ ,V g

)
=

(2µṼ µV g + C1) (2σṼ V g + C2)(
µ2
Ṽ

+ µ2
V g + C1

)(
σ2
Ṽ

+ σ2
V g + C2

) (12)

In the formulas shown above, Ṽ represents the denoised output image and V g represents the ground truth image. In our
experiments, pixel values of each image are normalized to [0, 1]. Hence the parameterMAXI in Eq.11 is set to 1. For Eq.12,
according to the study in [2], C1 = (K1 ∗ L)2 and C2 = (K2 ∗ L)2 with K1 = 0.01, K2 = 0.03 and L = 255 for 8-bits
images. However, because the maximum of pixel values is 1 according to our normalization, L is set to 1 in our experiments.

4. Visual Demonstration Rule of 3D Volumes
To comprehensively present the results of different methods, we follow the visual demonstration rule shown in Figure 1.

We project the reconstructed volumetric image on xOy, xOz and yOz plane separately and name them by their projection
axis. That is, x-slice, y-slice and z-slice. As for y-slice, we select the slice from the center of volume, which has more
abundant structural information than other positions.
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(b) Projection on xOz: y-slice
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Figure 1: Visual demonstration rule of the 3D volumes. We project the volumetric image into yOz, xOz and xOy plane separately to
show the visual results in three different views, which can get a complete insight of image in 3D space.



5. Additional Information for Experimental Results
5.1. Additional Information for Simulated Data

To comprehensively analyze the visual results of simulated data, we select additional areas on z-slice. Table 1 shows the
selected coordinates for each data. Figure 2-4 show the 3D visual results for simulated data.

Table 1: Selected coordinates for visual results of simulated data.

Dataset Belt Synapse SARS

x-coord. 1 1 1
y-coord. 150 65 60
z-coord. 513 513 513

LPF 17.97/0.234 BM4D 32.36/0.682 Topaz 29.39/0.950

Noise2Void 17.35/0.179 SC-Net (Ours) 32.79/0.852 Ground Truth

Figure 2: 3D Visual Results of SARS. Selected coordinates are x=1, y=150, z=513. Shown metrics: PSNR(dB)/SSIM.

LPF 24.55/0.269 BM4D 32.90/0.829 Topaz 27.53/0.980

Noise2Void 21.29/0.239 SC-Net (Ours) 29.02/0.860 Ground Truth

Figure 3: 3D Visual Results of Synapse. Selected coordinates are x=1, y=65, z=513. Shown metrics: PSNR(dB)/SSIM.



LPF 16.93/0.266 BM4D 28.61/0.541 Topaz 25.63/0.968

Noise2Void 21.87/0.304 SC-Net (Ours) 23.41/0.870 Ground Truth

Figure 4: 3D Visual Results of Belt. Selected coordinates are x=1, y=60, z=513. Shown metrics: PSNR(dB)/SSIM.

5.2. Additional Information for Real-world Data

To comprehensively show the results of real-world data, we select different x, y and z coordinates for each data. Table 2
shows the selected coordinates for each data. Figure 5-8 show the 3D results on selected coordinates. Comparing with Topaz,
our method can produce an enhanced result without introducing grid artifacts.

Table 2: Selected coordinates for visual results of real-world data.

Dataset Vesicle Mitochondria Centriole VEEV

x-coord. 360 905 95 650
y-coord. 150 150 120 120
z-coord. 513 740 670 1120

OursTopazBM4D

Smoothed ImageNoisy Noise2Void

Figure 5: 3D Visual Results of Vesicle. Selected coordinates are x=360, y=150, z=513.
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Figure 6: 3D Visual Results of Mitochondria. Selected coordinates are x=905, y=150, z=740.

OursTopazBM4D
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Figure 7: 3D Visual Results of Centriole. Selected coordinates are x=95, y=120, z=670.



Noisy Smoothed Image

BM4D Topaz Ours

Noise2Void

Figure 8: 3D Visual Results of VEEV. Selected coordinates are x=650, y=120, z=1120. The area pointed out by the red arrow has proved
that, when reconstructing the membrane structure of particles, our method can produce a more reliable result without introducing artifacts
comparing with Topaz.

5.3. Additional Ablation Study on Lsmooth

In this study, we test our SC-Net in two forms: complete loss function with Lsmooth (i.e., with Lsmooth) and the loss
function without Lsmooth (i.e., Non-Lsmooth). Table 3 shows the quantitative analysis of output from these two models and
Fig 9 shows the visual results. Results prove that Lsmooth can provide noticeable improvement for the performance of noise
smoothing and structure preservation when training data is not sufficient.

Table 3: PSNR(dB)/SSIM Results for Ablation Study on Sparsity Constraint under the noise with σ=10.

Dataset Noisy Non-Lsmooth With Lsmooth

Synapse 27.79/0.503 24.56/0.680 30.03/0.932
Belt 22.76/0.423 26.28/0.629 28.61/0.914

Ground Truth Noisy 27.79Non-Lsmooth 24.56 With-Lsmooth 30.03

Ground Truth Non-Lsmooth 26.28 With-Lsmooth 28.61 Noisy 22.76
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Figure 9: Visual results of comparisons between volumes filtered by SC-Net with sparsity constraint loss and the one without sparsity
constraint loss. (noise intensity: σ = 10, metric:PSNR(dB)).
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