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In the supplementary material, we present

• the details of 2.5D regression (See Sec. 3.1) in Sec. A,
• the details of HSD dataset (See Sec 4.2) in Sec. B,
• the cross-modal consistency (See Sec. 3.3) in Sec. C,
• the ablation study for label correction and sample se-

lection (See Sec. 3.2) in Sec. D,
• the comparison of our proposed pose registration (See

Sec. 3.2) with a state-of-the-art pose prior module in
Sec. E,

• the discussion of synthetic dataset in Sec. F,
• more qualitative results in Sec. G.

Note that all the notation and abbreviations here are con-
sistent with the main manuscript.

A. 2.5D Regression for Hand Pose
A standard method for 3D pose estimation of the hand is

to use a 2.5D representation (uv,d) and integrate over the
2D heatmap huv and latent depth map hd. Specifically, the
output of the network f are the heatmaps huv, hd; the 2.5D
components uv and d are estimated as:

uv =
∑
g∈Ω

g ⊗ softmax(βhuv)(g),

d =
∑
g∈Ω

hd(g)⊗ softmax(βhuv)(g),
(1)

where Ω is the set of all pixel locations, ⊗ is the element-
wise product, β is the learnable parameter and the function
softmax(·) serves as normalization. We show the pipeline
of 2.5D regression in Fig. 1. For more details we refer the
reader to the paper [4].

In addition, we use the same framework f to estimate
the hand mask w as an auxiliary modality, to encourage the
predicted poses to be consistent with the hand masks (See
Sec. 3.3).

B. HSD dataset
We apply a semi-supervised annotation framework

based on the work [7]. We use 4 RealSense D415 cameras

Figure 1: The pipeline of 2.5D regression.

in different views to record 4 RGB-D sequences. Each se-
quence is performed by one actor and contains 20K frames.
We use the first two sequences for training and others for
testing. The labeling is done on the multi-view depth im-
ages and then applied to the RGB images. Specifically,
we use synthetic depth maps as input for warmup training
and then train with both manually labelled multi-view depth
maps and unlabelled multi-view depth maps iteratively. For
multi-view labelling, we initialize the 3D poses with the
predictions and project the 3D poses to the image coordi-
nates for each view. We refine the 2D pose of each view
manually, and perform a synchronized update of 3D pose
and other views’ 2D poses until the 2D poses of all the view
are reasonable. In each iteration, after the training, we vi-
sualize the predictions of unlabelled data and manually re-
vise the worst 100frames based on the model fitting energy.
Next, we move three quarters of the revised data into the
labelled training data and the remaining revised data into
the testing data. We train and evaluate the model iteratively
until the model achieves a desired performance on testing
data. Specifically, our annotation ends up with a mean EPE
of less than 6 mm on testing data, which considered to be
comparable to human-annotated labels. We show some ex-
amples of the dataset in Fig. 2.

C. Cross-modal Consistency
In this section, we outline the details of the circle hand

model. Our goal is to estimate the model-fitting energy
given 2D poses and hand masks. We start off with the
assumption that we already have the 2D poses and hand



Figure 2: Examples of HSD dataset with ground-truth 2D poses.

Figure 3: The circle centers based on the hand joints. In-
dianred dots denote the hand joint locations and blue dots
denote the circle centers of our proposed circle hand model.

Figure 4: Each triplet left to right shows groundtruth, cir-
cle hand mask (with 2D pose in blue, circles in red), and
difference.

masks. For the fingers, we then trisect each bone evenly and
get ten keypoints for each finger. Excluding the fingertips,
there are 45 keypoints remaining, which serve as centers of
the circles. The palm is represented by 5 “bones” radiating
from the wrist keypoint to the base of each finger. We simi-
larly trisect these bone evenly and get two keypoints, totally
55 circle centers for our hand circle model. We show the
joints (indianred dots) and the circle centers (blue dots) in
Fig. 3. Also, Fig. 4 shows two examples of our circle hand
masks.

As for the radius, we minimize our proposed energy loss

with the model-to-data term and the data-to-model term as
described in Sec. 3.3, and learn the radius via a five-layer
MLP with BN and leaky ReLU. Our circle hand model is
pre-trained on RHD dataset and fixed for our experiments.
Given centers and radius, we approximate hand masks by
setting the pixel value to 1 if the pixel is inside a circle. The
hand mask w is estimated as below:

w(g) =

1 if min
i∈[0,54]

(||g − ci||2 − ri)<0,

0 otherwise,
(2)

where g ∈ Ω. The rendered hand mask can be found in
Fig. 4 middle of the main manuscript.

D. Label Correction and Sample Selection
In this section, we first explore the effect of τ for di-

versity augmentation, the confidence threshold defined in
Sec. 3.2 and Eq. 8 of the main manuscript. In Fig. 5, we
show the STB testing performance when fine-tuning pre-
trained model on STB training set with different τ . When
τ=0, which corresponds to rejecting all samples, our Semi-
Hand degrades to baseline with consistency training and
achieves worst performance. When the value of τ is small,
probably not enough pseudo-labels are selected for training.
As the value of τ increases, the accuracy first increases and
then slightly decreases. This indicates the fine-tuning bene-
fits from incorporating of enough high-confidence pseudo-
labels for training at first. But, as τ further increases, more
noisy pseudo-labels are selected for training and this hurts
the training procedure. When τ = +∞, this corresponds
to accepting all samples. Experimentally, we get the best



performance when τ = 1.5. Also, the comparison between
τ = 0 and τ =+∞ indicates that having noisy labels may
help the training procedure more than not using these labels
at all.
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Figure 5: Comparison of different τ for SemiHand.

τ = 1.5 w/o w/
Mean EPE [mm] 21.70 16.30

τ = +∞ w/o w/
Mean EPE [mm] 24.31 21.28

Table 1: Mean EPE of baseline with pseudo-labeling with
and without label correction.

We also explore the effectiveness of label correction and
sample selection for baseline with pseudo-labeling for di-
versity augmentation. We set τ to 1.5 and +∞ respectively,
and verify the pseudo-labeling with and without label cor-
rection. After fine-tuning on STB training set, the STB test-
ing performance is shown in Tab. 1. We can see that pseudo-
labeling with label correction outperforms the case without
label correction by a large margin.

Meanwhile, if we set τ to +∞, the performance of
pseudo-labeling without label correction is even worse than
that of baseline (24.31 mm vs. 23.83 mm), which indi-
cates naive pseudo-labeling are even detrimental to learn-
ing. However, when only selecting high-confidence pseudo-
labels (i.e. , τ = 1.5) for diversity augmentation, we prevent
model degradation and achieve better performance than that
of baseline (21.70 mm vs. 23.83 mm). This also verifies the
necessity of pseudo-labels with high-confidence and label
correction.

E. Pose Registration
In this section, we compare our pose registration with a

hand pose prior module, IKNet [9, 8]. Given a hand tem-
plate, IKNet tackles joint rotation estimation as an inverse
kinematics problem. It proposes to regress the pose param-
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Noisy Pose Reconstruction

IKNet RHD with MANO template
IKNet STB with MANO template
Ours RHD with MANO template
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Ours STB with ground-truth template

Figure 6: Comparison of our proposed pose registration
with IKNet for noisy pose reconstruction.

eters of MANO from 3D poses with a neural network. The
network is pre-trained on large amount of MoCap data.

The fundamental problem with this approach however,
is that MANO serves as a hand shape model. The pose pa-
rameters of MANO is based the rotation of mesh vertices.
Depending on the actual pose, the bone lengths of the hand
may actually vary. Also, the MANO template can not match
the ground-truth template perfectly. These two lead to a
surprisingly significant reconstruction error in the range of
9-15 mm for RHD/STB hand as shown in Fig. 6. Further-
more, as a data-driven method, IKNet may not generalize
well to unseen data.

In contrast, we tackle joint rotation estimation as a reg-
istration problem as done in [7]. We propose a greedy ap-
proximation based on the hand’s kinematic chain. This does
not require any training and is more flexible in that it can be
based on arbitrary templates. IKNet, however, is limited to
using only the MANO template and requires large amounts
of training data. More importantly, our proposed greedy
approximation avoids the accumulation of end point errors
and achieve more accurate pose reconstruction. This makes
the approximation method ideal for pose registration and
correction.

To verify the effectiveness of our proposed pose regis-
tration, we show the results of noisy pose reconstruction
in Fig. 6. We use noisy 3D poses as input, i.e. , ground-
truth 3D poses corrupted with Gaussian noise on three axes
and compare the denoising performance of IKNet versus
our proposed pose registration. For IKNet, we use the re-
leased model [8] which trained on SIK-1M [8] and fine-
tuned on RHD training set. Our pose registration is opti-
mization based and does not require any training or fine-
tuning. To see the effect of training data for IKNet, we
evaluate the modules on two different evaluation sets, RHD
testing set and STB testing set. We use as input the same
(MANO) template from IKNet to compare the two modules



Figure 7: Examples of different synthetic dataset. From top row to bottom row: RHD, MANO+NN and MANO+Blender.

in a fair way. As shown in Fig. 6, when using ground-truth
3D poses as input, we can see the performance of IKNet
on RHD testing set significantly outperforms that on STB
testing set (9.5 mm vs. 12.97 mm) while our pose registra-
tion without training achieve more close performance (7.96
mm vs 7.15 mm). Also. on both RHD and STB testing set,
ours outperforms IKNet. This indicates that our pose reg-
istration achieve better performance and generalization. As
the noise increases, the accuracy of both modules decrease.
Note that our pose registration outperform IKNet whatever
the value of noise is. We also compare different templates
for pose registration. We can see that pose registration with
ground-truth templates outperform that with MANO tem-
plates when adding small Gaussian noise. As the noise in-
creases, the performance of pose registration with the two
templates becomes close.

F. Synthetic Data

In our main paper, we used only the RHD dataset for
pre-training. In this section we investigate the impact that
the quality of the synthetic data may have. Besides the RHD
dataset, we also pre-train our SemiHand with two differ-
ent synthesis data. As [1], we synthesize data based on

MANO [6] and a neural renderer [5] to generate data on-
line (MANO+NN dataset). Additionally, we synthesis data
based on [3] and use MANO and blender [2] to synthe-
size 40k images (MANO+blender dataset). Compared to
the RHD dataset, MANO+NN and MANO+blender are of
a much lower quality. They have limited poses, a limited
range of hand skin colors and use a fixed lighting scheme for
rendering. Also, the procedure of placing foreground hands
into background images is naive. The data in MANO+NN
lack the wrist, which we find to be important for the hand
segmentation. We show the examples of three datasets in
Fig. 7. We can see that RHD is the most photo-realistic
hand dataset and the image quality of MANO+blender is
marginally better than that of MANO+NN.

We pre-train models on those three synthetic datasets re-
spectively and then fine-tune the models on STB training set
and DO. We show the mean EPE of STB testing set and DO
in Fig. 9 and 10. We can see that training with more realis-
tic synthetic hand data tend to achieve better performance.
Regardless of fine-tuning, using RHD as synthetic data al-
ways achieves best performance and using MANO+Blender
achieves the second best performance. They both outper-
form using MANO+NN as synthetic hand data.



Figure 8: Failure cases with predicted 2D poses and masks.
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Figure 9: Comparison of different synthetic datasets for pre-
training on STB.
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Figure 10: Comparison of different synthetic datasets for
pre-training on DO.

However, interestingly, using MANO+NN as synthetic

hand data achieves the most significant improvement after
fine-tuning. Even its performance is still the worst, the gap
with using other two synthetic data is incremental after fine-
tuning. Take STB for example, the gap between RHD and
MANO+NN is decreased from 26.19 mm to 2.1 mm after
fine-tuning as shown in Fig. 9. This indicates our Semi-
Hand still works on STB even pre-training with low quality
synthetic data.

G. Qualitative Results
In this section, we show the qualitative results and some

failure cases. In Fig. 11, we visualize the predictions of the
baseline and our SemiHand as well as the ground-truth. We
can see that the predicted poses of baseline may be located
in the background. With consistency training and pseudo-
labeling, the refined predictions tend to be centered on the
fingers and match the shape of hand.

Also, we show some failure cases in Fig. 12 and Fig. 8.
In most cases, we find the failures are highly related to the
poor predictions of hand mask. As the hand is occluded or
in challenging lighting conditions, the model fails to outline
the complete hand silhouette and the hand keypoints tend to
locate only inside the shrunken hand silhouette as shown in
Fig. 8. This encourages us to further explore the multi-task
framework with cross-modal consistency.
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Figure 11: Qualitative results. For each trio, the left most column corresponds to the prediction of baseline, the second
column corresponds to the prediction of our SemiHand and the right most column corresponds to the ground-truth.



Figure 12: Failure cases. For each trio, the left most column corresponds to the prediction of baseline, the second column
corresponds to the prediction of our SemiHand and the right most column corresponds to the ground-truth.
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