
TransPose: Keypoint Localization via Transformer
— Supplementary Material

A. 2D Sine Position Embedding
Without the position information embedded in the in-

put sequence, the Transformer Encoder is a permutation-
equivariant architecture:

Encoder (ρ (X)) = ρ (Encoder (X)) , (1)

where ρ is any permutation for the pixel locations or the
order of sequence. To make the order of sequence or the
spatial structure of the image pixels matter, we follow the
sine positional encodings but further hypothesize that the
position information is independent at x (horizontal) and
y (vertical) direction of an image, like the ways of [4, 2].
Concretely, we keep the original 2D-structure respectively
with d/2 channels for x, y-direction:

PE(2i,py,:) = sin
(
2π ∗ py/(H ∗ 100002i/ d

2 )
)
,

PE(2i+1,py,:) = cos
(
2π ∗ py/(H ∗ 100002i/ d

2 )
)
,

PE(2i,:,px) = sin
(
2π ∗ px/(W ∗ 100002i/ d

2 )
)
,

PE(2i+1,:,px) = cos
(
2π ∗ px/(W ∗ 100002i/ d

2 )
)
,

(2)

where i = 0, 1, ..., d/2 − 1, px or py is the position index
along x or y-direction. Then they are stacked and flattened
into a shape RL×d. The position embedding is injected into
the input sequences before self-attention computation. We
use 2D sine position embedding by default for all models.

B. What position information has been learned
in the TransPose model with learnable po-
sition embedding?

We show what position information has been learned in
the TransPose (TransPose-R) with learnable position em-
bedding. It has been discussed in the paper. As shown in
Fig. 1, we visualize the similarities by calculating the co-
sine similarity between vectors at any pair of locations of
the learnable position embedding and reshaping it into a 2D
grid-like map. We find that the embedding in each location
of learnable position embedding has a unique vector value
in the d-dim vector space, but it has relatively higher cosine

0
1

2
3

4

0

5

1 2 3 4 5 6 7
0.2

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e 
Si

m
ila

rit
y

Figure 1. The cosine similarities between the learned position em-
bedding vectors, which have been reshaped into 2D grid and inter-
polated with 0.25 scale factor for a better illustration (the original
shape is (24, 32)). Each map in x-row and y-col of the figure
represents the cosine similarities between the embedding vector in
position (x, y) and the embedding vectors at other locations.

similarity values with the neighbour locations in 2D-grid
and lower values with those far away from it. The results
indicate the coarse 2D position information has been im-
plicitly learned in the learnable position embedding. We
suppose that the learning sources of the position informa-
tion might be the 2D-structure groundtruth heatmaps and
the similar features existing in the 1D-structure sequences.
The model learns to build associations between position
embedding and input sequences, as a result it can predict the
target heatmaps with 2D Gaussian peaking at groundtruth
keypoints locations.

In the paper, we find that position embedding helps to
generalize better on unseen input resolutions, particularly
2D sine position embedding. We conjecture that 1) the mod-
els with a fixed receptive field may be hard to adapt the
changes in scales; 2) building associations with position in-
formation encoded in Sine position embedding [9] may help
model generalize better on different sizes.



C. Transformer Encoder Layer

The Transformer Encoder layer [9] we used can be for-
mulated as:

Z =LayerNorm (MultiheadSelfAttention (X) +X) ,

X∗ =LayerNorm (FFN (Z) + Z) ,
(3)

where X is the original input sequence that has not yet been
added with position embedding. The position embedding
will be added to X for computing querys and keys exclud-
ing values. X∗ is the output sequence of the current Trans-
former Encoder layer, as the input sequence of next encoder
layer. The formulations of Multihead Self-Attention and
FFN are defined in [9].

D. Gradient Analysis

From the view of an activation at some location i of the
predicted heatmaps, the network weights associating all in-
put tokens across the whole image/sequence with this acti-
vation can be seen as a discriminator that judges the pres-
ence or absence of a certain keypoint at this location. As
revealed by [5, 7, 1, 6], the gradient information can indi-
cate the importance (sensitivity) of the input features to a
specific output of a non-linear model. That assumption is
based on that tiny change in the input (pixel/feature/token)
with the most important feature value causes a large change
in what the output of the model would be.

Suppose we have a trained model and a specific image,
hi ∈ RK is the scores for all K types of keypoints at loca-
tion i of the predicted heatmaps; zi ∈ Rd is the intermedi-
ate feature outputted by the last self-attention layer before
being fed into FFN. There is only a ReLU excluding the
linear and convolutions1 (head) layers after the last atten-
tion layer. ReLU (rectified linear unit) activation function
in FFN can be empirically regarded as a negative contri-
bution filter, which only retains positive contributions and
maintains the linearity. Next, we choose numerator lay-
out for computing the derivative of a vector with respect
to a vector. We thus assume the mapping from zi to hi

can be approximated as a linear function f with learned
weights Wf ∈ RK×d and bias b ∈ RK by computing the
first-order Taylor expansion at a given local point z0

i , i.e.,

hi ≈ Wfzi + b, Wf = ∂hi

∂zi

∣∣∣
z0
i

. Then we compute the

partial derivative of hi at location i of the output heatmaps
w.r.t the token xj at location j of the input sequence of the

1a 1 × 1 convolution is also a position-wise linear layer; the 4 × 4
deconvolution used in TP-R acts as the upsampling operation.

last attention layer:

∂hi

∂xj
=

∂hi

∂zi

∂zi

∂xj

=
∂f(zi)

∂zi
(1+

∂wiV

∂xj
)

≈ Wf (1+
∂wi,0v0 + ...+wi,jvj + ...+wi,L−1vL−1

∂xj
)

= Wf (1+
∂wi,jvj

∂xj
)

= Wf (1+
∂Ai,jW

⊤
v xj

∂xj
)

(4)
where vj ∈ Rd is the value vector transformed by: vj =
W⊤

v xj . Ai,j is a scalar value that is computed by the dot-
product between qi and kj . We assume G := ∂hi

∂xj
as a

function w.r.t. a given attention score Ai,j . Under this as-
sumption Ai,j is deemed as an observed variable that has
blocked its parent nodes. Then we define:

G (Ai,j) = Wf (1+
∂Ai,jW

⊤
v xj

∂xj
)

= Wf

(
1+Ai,jW

⊤
v

)
= Ai,jWfW

⊤
v +Wf

= Ai,j︸︷︷︸
Image-Specific: dynamic weights

·Wf ·W⊤
v +Wf︸ ︷︷ ︸

Learned: static weights

= Ai,j ·K+B
(5)

where K,B ∈ RK×d are static weights shared across all
positions. We can see that the function G is approximately
linear with Ai,j , i.e., the degrees of contribution to the pre-
diction hi directly depend on its attention scores at those
locations.

The last attention layer in Transformer Encoder, whose
attention scores are seen as the image-specific weights, ag-
gregate contributions from all locations according to at-
tention scores and finally form the maximum activations
in the output heatmaps. Though the layers in FFN and
head cannot be ignored2, they are position-wise operators,
which almost linearly transform the attention scores from
all the positions with the same transformation. In addition,
Q = (X+P)Wq,K = (X+P)Wk,V = XWv where
P is the position embedding. Because Ai,j ∝ QiK

⊤
j , the

position embedding values also affect the attention scores
to some extent.

21. Assuming that the used convolutions extract feature in a limited
patch, the global interactions mostly occur at the attention layers. 2. The
layer normalization does not affect the interactions between locations.



(a) TP-R-A4: predictions and dependency areas for input 1. (b) TP-H-A4: predictions and dependency areas for input 1.

(c) TP-R-A4: predictions and dependency areas for input 2. (d) TP-H-A4: predictions and dependency areas for input 2.

(e) TP-R-A4: predictions and dependency areas for input 3. (f) TP-H-A4: predictions and dependency areas for input 3.

(g) TP-R-A4: predictions and dependency areas for input 4. (h) TP-H-A4: predictions and dependency areas for input 4.

(i) TP-R-A4: predictions and dependency areas for input 5. (j) TP-H-A4: predictions and dependency areas for input 5.

(k) TP-R-A4: predictions and dependency areas for input 5. (l) TP-H-A4: predictions and dependency areas for input 5.

Figure 2. Predicted locations and the dependency areas for different types of keypoints in different models: TP-R-A4 (left column) and
TP-H-A4 (right column). In each sub-figure, the first one is the original input image plotted with predicted skeleton. The other maps
visualized by the defined dependency area (Ai,:) of the attention matrix in the last layer with a threshold value (0.00075). The predicted
location of a keypoint is annotated by a WHITE color pentagram (⋆) in each sub-map. Redder area indicates higher attention scores.



At
te

n.
La

ye
r 0

At
te

n.
La

ye
r 1

At
te

n.
La

ye
r 2

At
te

n.
La

ye
r 3

nose eye(l) eye(r) ear(l) ear(r) sho.(l) sho.(r) elb.(l) elb.(r) wri.(l) wri.(r) hip(l) hip(r) kne.(l) kne.(r) ank.(l) ank.(r) random random

0.5

1.0

(a) TP-R-A4: predictions and dependency areas of each keypoint in
different attention layers.

At
te

n.
La

ye
r 0

At
te

n.
La

ye
r 1

At
te

n.
La

ye
r 2

At
te

n.
La

ye
r 3

nose eye(l) eye(r) ear(l) ear(r) sho.(l) sho.(r) elb.(l) elb.(r) wri.(l) wri.(r) hip(l) hip(r) kne.(l) kne.(r) ank.(l) ank.(r) random random

(b) TP-H-A4: predictions and dependency areas of each keypoint in
different attention layers.

At
te

n.
La

ye
r 0

At
te

n.
La

ye
r 1

At
te

n.
La

ye
r 2

At
te

n.
La

ye
r 3

nose eye(l) eye(r) ear(l) ear(r) sho.(l) sho.(r) elb.(l) elb.(r) wri.(l) wri.(r) hip(l) hip(r) kne.(l) kne.(r) ank.(l) ank.(r) random random

0.5

1.0

(c) TP-R-A4: predictions and dependency areas of each keypoint in
different attention layers.

At
te

n.
La

ye
r 0

At
te

n.
La

ye
r 1

At
te

n.
La

ye
r 2

At
te

n.
La

ye
r 3

nose eye(l) eye(r) ear(l) ear(r) sho.(l) sho.(r) elb.(l) elb.(r) wri.(l) wri.(r) hip(l) hip(r) kne.(l) kne.(r) ank.(l) ank.(r) random random

(d) TP-H-A4: predictions and dependency areas of each keypoint in
different attention layers.

At
te

n.
La

ye
r 0

At
te

n.
La

ye
r 1

At
te

n.
La

ye
r 2

At
te

n.
La

ye
r 3

nose eye(l) eye(r) ear(l) ear(r) sho.(l) sho.(r) elb.(l) elb.(r) wri.(l) wri.(r) hip(l) hip(r) kne.(l) kne.(r) ank.(l) ank.(r) random random 0.0

(e) TP-R-A4: predictions and affect areas of each keypoint in different
attention layers.

At
te

n.
La

ye
r 0

At
te

n.
La

ye
r 1

At
te

n.
La

ye
r 2

At
te

n.
La

ye
r 3

nose eye(l) eye(r) ear(l) ear(r) sho.(l) sho.(r) elb.(l) elb.(r) wri.(l) wri.(r) hip(l) hip(r) kne.(l) kne.(r) ank.(l) ank.(r) random random

0.0

(f) TP-H-A4: predictions and affect areas of each keypoint in different
attention layers.

Figure 3. Dependency areas (the first two rows) and Affected areas (the last row) in different attention layers for different input images.

Backbone ResNet-S

Stem Conv-k7-s2-c64, BN, ReLU
Pooling-k3-s2

Blocks

3×Bottleneck-c64
Bottleneck-s2-c128
3×Bottleneck-c128
Conv-k1-s1-c256

Table 1. The detailed configurations for ResNet-S. Conv-k7-s2-
c64 means a convolutional layer with 7×7 kernel size, 2 stride,
and 64 output channels, followed by a BN and ReLU; the
same below. The Bottleneck-c64 includes Conv-k1-s1-c64-BN-
ReLU, Conv-k3-s1-c64-BN-ReLU, and Conv-k1-s1-c256-BN.
Bottleneck-c128 includes Conv-k1-s1-c128-BN-ReLU, Conv-k3-
s1-c128-BN-ReLU, and Conv-k1-s1-c512-BN. See details in [3].

Backbone HRNet-S-W32(48)

Stem
Conv-k3-s2-c64, BN, ReLU
Conv-k3-s2-c64, BN, ReLU

4×Bottleneck-c64

Blocks
transition1∼stage2
transition2∼stage3

Conv-k1-s1-c64(92)
Table 2. The detailed configurations for HRNet-S-W32(48). More
detailed information about the transition layer and stage blocks are
described in the HRNet paper [8].

E. Architecture Details

We report the architecture details of ResNet-S and
HRNet-S-W32(48) in Tab. 1 and Tab. 2. The ResNet-
S* only differs from ResNet-S in that ResNet-S* has 10
Bottleneck-c128 blocks. More details about HRNet-W32
and HRNet-W48 are described in [8].

F. More Attention Maps Visualizations

In this section, we show more visualization results of the
attention maps from TP-R-A4 (TransPose-R-A4) and TP-
H-A4 (TransPose-H-A4) models. The attention maps of the
last attention layers of two models are shown in Fig. 2. The
attention maps in different attention layers of two models
are shown in Fig. 3.

References

[1] Sebastian Bach, Alexander Binder, Grégoire Montavon,
Frederick Klauschen, Klaus-Robert Müller, and Wojciech
Samek. On pixel-wise explanations for non-linear classifier
decisions by layer-wise relevance propagation. PloS one,
10(7):e0130140, 2015. 2

[2] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-
end object detection with transformers. In ECCV, pages 213–
229, Cham, 2020. 1



[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR, pages
770–778, 2016. 4

[4] Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz
Kaiser, Noam Shazeer, Alexander Ku, and Dustin Tran. Image
transformer. In ICML, 2018. 1

[5] Wojciech Samek, Grégoire Montavon, Andrea Vedaldi,
Lars Kai Hansen, and Klaus-Robert Müller. Explainable AI:
interpreting, explaining and visualizing deep learning, vol-
ume 11700. Springer Nature, 2019. 2

[6] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das,
Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra. Grad-
cam: Visual explanations from deep networks via gradient-
based localization. In ICCV, pages 618–626, 2017. 2

[7] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman.
Deep inside convolutional networks: Visualising image clas-
sification models and saliency maps. In ICLR (Workshop
Poster), 2013. 2

[8] Ke Sun, Bin Xiao, Dong Liu, and Jingdong Wang. Deep high-
resolution representation learning for human pose estimation.
In CVPR, June 2019. 4

[9] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In NeurIPS, pages
5998–6008, 2017. 1, 2


