
Appendix: Visual Distant Supervision for Scene Graph Generation

1. The Denoising Framework: Pseudo-Code
In this section, we provide the pseudo-code of the

denoising framework in distantly supervised and semi-
supervised settings respectively.

Algorithm 1 Distantly Supervised Denoising Framework

Require: Λ: commonsense knowledge base
Require: DS : distantly labeled image data
Require: f(·; θ): any scene graph model, with parameter θ
Optional: Φ: external semantic signal

1: Randomly initialize the model parameter θ0

2: // Initial E step: estimate the probabilistic distant labels
3: Obtain distant labels d = Ψ(s, o,Λ)
4: if external signal Φ available then
5: Initialize r1 = e
6: else
7: Initialize r1 = d
8: end if
9: // Initial M step: optimize model parameter

10: Optimize θ1 = arg maxθ L(D1
S ; θ0)

11: while not done do
12: // E step: estimate the probabilistic distant labels
13: if external signal Φ available then
14: Estimate rti = ωfi(s, o; θ

t−1) + (1− ω)ei
15: else
16: Estimate rti = fi(s, o; θ

t−1)
17: end if
18: Eliminate noisy object pairs
19: // M step: optimize model parameter
20: Optimize θt = arg maxθ Lp(Dt

S ; θt−1)
21: end while

2. Implementation Details
In this section, we provide implementation details of our

model and baseline methods. For fair comparisons, all the
neural models in our experiments are implemented using
the same object detector, scene graph model and backbone.

Object Detector. We adopt the object detector implemen-
tation from Tang et al. [6]. Specifically, the object detector
is trained using SGD optimizer with learning rate 8× 10−3

and batch size 8. During the training process, the learning
rate is decreased two times by 10 in 30, 000 and 40, 000
iterations respectively.

Algorithm 2 Semi-Supervised Denoising Framework

Require: Λ: commonsense knowledge base
Require: DS : distantly labeled image data
Require: DL: human-labeled image data
Require: f(·; θ): any scene graph model, with parameter θ

1: Initialize f(·; θ0) with fully supervised model
θ0 = arg maxθ Lq(DL; θ)

2: while not done do
3: // E step: estimate the probabilistic distant labels
4: Estimate rti = fi(s, o; θ

t−1
2 )

5: Eliminate noisy object pairs
6: // M1 step: pre-train on distantly labeled data Dt

S

7: Optimize θt1 = arg maxθ Lq(Dt
S ; θ)

8: // M2 step: fine-tune on human-labeled data DL
9: Optimize θt2 = arg maxθ Lq(DL; θt1)

10: end while

Scene Graph Model. For the base scene graph model,
we follow the implementation of Neural Motif [8], with
ResNeXt-101-FPN [4, 7] as the backbone. For predicate
classification and scene graph classification, the ratio of
positive relation samples and negative relation samples in
each image is at most 1:3. For scene graph detection, a re-
lational triplet is considered as positive only if the detected
object pairs match ground-truth annotations, i.e., with iden-
tical object categories and bounding box IoU > 0.5. We
find that this strict constraint leads to sparse positive super-
vision in experiments, especially in our distantly supervised
setting. To address the issue, we change the ratio of positive
and negative relation samples in distantly supervised setting
to strictly 1:1. During evaluation, we only keep 64 object
bounding box predictions. The models are trained using
SGD optimizer on 2 NVIDIA GeForce RTX 2080 Ti, with
momentum 0.9, batch size 12 and weight decay 5× 10−4.
Our Model. All the hyperparameters of our model are se-
lected by grid search on the validation set. (1) In distantly
supervised setting, for the denoising framework, the weight-
ing hyperparameter ω is 0.9, and 75% noisy object pairs are
discarded. In the first iteration, we train the model with
learning rate 0.12, and decrease the learning rate 3 times
after the plateaus of validation performance. In the second
iteration, the learning rate is 0.012, and decays 1 times after
the validation performance plateaus. Note that following
Devlin et al. [2], the learning rate in the second iteration
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Figure 1. Dependencies of Visual Genome relations from Chen et al. [1]. Directed arrows: hypernyms. Stacked nodes: synonyms. Red
nodes: removed relations. Green nodes: retained relations.

Models
Predicate Classification Scene Graph Classification Scene Graph Detection

Mean
R@50 R@100 mR@50 mR@100 R@50 R@100 mR@50 mR@100 R@50 R@100 mR@50 mR@100

D
S

(O
ur

s) Raw Label 16.93 19.02 5.75 7.15 11.62 12.59 4.01 4.64 7.52 7.79 2.32 2.49 8.49
Motif 33.21 36.17 10.84 12.48 20.35 21.85 5.23 5.91 12.89 15.48 4.51 5.58 15.38
Motif + DNS 35.53 38.28 9.35 10.74 21.33 22.70 4.79 5.36 15.04 17.86 3.83 4.66 15.79
Motif + DNS + EXT 36.43 39.21 8.68 10.03 21.88 23.21 3.80 4.23 16.32 18.78 3.82 4.55 15.91

FS Motif [8] 63.96 65.93 15.15 16.24 38.04 38.90 8.66 9.25 31.00 35.06 6.66 7.73 28.05

SS Motif + DNS (Ours) 64.43 66.43 16.12 17.47 38.38 39.25 9.27 9.86 30.91 35.08 7.03 8.29 28.54

Table 1. Results of visual distant supervision on Visual Genome 50 predicates (%). DS: distantly supervised, SS: semi-supervised.

is smaller than the first iteration, since we are actually fine-
tuning the model parameter inherited from the first iteration.
(2) In semi-supervised setting, for the denoising framework,
no object pairs are discarded. The initial fully supervised
model is trained with learning rate 0.12. In both iterations,
the learning rate is 0.12 for pre-training, and 0.012 for fine-
tuning. The learning rate decays 2 and 1 times in the first
and second iterations respectively. To fine-tune the pre-
trained distantly supervised model without semi-supervised
denoising, we optimize with learning rate 0.012 that decays
2 times. The decay rate is 10 for all models.

Baselines. For the Limited Labels [1], we train the deci-
sion trees for 200 different trails on 10 randomly sampled
human-labeled seed instances for each relation, and select
the best models according to the performance on the vali-
dation set. For the weakly supervised model, since Visual
Genome does not have image-level captions, we utilize all
the images in Visual Genome training set that have captions
from COCO [5], resulting in 35, 340 images with captions
in total. Then we train the weakly supervised model with all
Visual Genome object annotations from these images, and
relation labels parsed from the corresponding captions. For
the Cleanness Loss [3], we denoise with soft weight given
by the confidence of the scene graph model.

3. Data statistics

In our main experiments, we adopt the refined relation
schemes from Chen et al. [1], which removes hypernyms

(e.g., near and on), redundant synonyms (e.g., lying
on and laying on), and unclear relations (e.g., and) in
the most frequent 50 relation categories in Visual Genome,
resulting in 20 well-defined relation categories. The relation
dependencies from Chen et al. [1] are shown in Figure 1.
The dataset contains 10, 986, 1, 566 and 3, 025 images in
training, validation and test set respectively, where each
image contains an average of 13.58 objects, 2.10 human-
labeled relation instances and 15.60 distantly labeled rela-
tion instances.

4. Supplementary Experiments

Case Study. We provide qualitative examples in Figure 2
for better understanding of different scene graph models.

Results on 50 Visual Genome Predicates. We report the
experimental results on 50 Visual Genome predicates in Ta-
ble 1. We observe that although reasonable performance can
be achieved, the improvement from distant supervision and
the denoising framework shrinks. This is because that the
50 relations are not well-defined, where the major relations
are problematic hypernym (e.g., near and on), redundant
synonym (e.g., lying on and laying on), and unclear
(e.g. and) relations, as pointed out by Chen et al. [1]. The
problematic relation schemes can bring difficulties to de-
noising distant supervision.

Results on 1,700 Visual Genome Predicates. Visual dis-
tant supervision can alleviate the long-tail problem and
therefore enables large-scale visual relation extraction. To



Models
Accuracy Mean Accuracy # Non-zero Predicates

top-1 top-5 top-10 top-1 top-5 top-10 top-1 top-5 top-10
FS Motif [8] 64.05 81.35 85.05 1.51 5.15 7.32 103 169 212

SS Motif + DNS (Ours) 66.10 84.26 87.72 3.08 9.49 13.44 218 362 435

Table 2. Results of visual distant supervision on Visual Genome 1,700 predicates (%). FS: fully supervised, SS: semi-supervised.

investigate the effectiveness of visual distant supervision in
handling large-scale visual relations, we refine the full Vi-
sual Genome predicates following the principles proposed
by [1], resulting in 1, 700 well-defined predicates. In ad-
dition to top-K accuracy, to better focus on the long-tail
performance, we also report top-K mean accuracy and the
number of non-zero predicates (i.e., predicates with at least
one correctly predicted instance). From the experimental
results in Table 2, we observe that our model significantly
outperforms its fully supervised counterpart. Notably, our
model nearly doubles the top-K mean accuracy and the
number of non-zero predicates, demonstrating the promis-
ing potential of visual distant supervision in handling large-
scale visual relations in the future.
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Figure 2. Qualitative examples of model predictions in predicate classification task. We show top 10 predictions from (1) models that do
not utilize human-labeled data, including weakly supervised and distantly supervised model, and (2) models that leverage human-labeled
data, including fully supervised model and our semi-supervised model. Green edges: predictions that match Visual Genome annotations,
blue edges: plausible predictions that are not labeled in Visual Genome, red edges: implausible predictions.


