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Figure A1. While the base agent succeeds on all tasks but “TV
Monitor”, the tethered agent struggles to solve 5 categories.
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Figure A2. While scene difficulty varies, difficulty distribution is
not extremely heavy-tailed. TEST-STD shift could result from 1-2
more difficult scenes.

A. Appendix

We use the appendix to elaborate on agent behavior and
methodology.

A.1. Agent Performance against goal distance, cat-
egory, and scene

Our experiments show large performance variance across
OBJECTNAV splits. We check for anomalous agent biases
by comparing agent success rates conditioned on several
episode attributes. Since the large gap between GT and
RedNet performance is already established, we provide these
plots with GT segmentation.
The base agent has reasonable performance variance across
all categories, succeeding less often on rarer categories
(Fig. A1) and more distant goals (Fig. A3). Scene variance
(Fig. A2) is wide (0.3 to 0.85), but not particularly heavy-
tailed; the TEST-STD drop is likely simply due to increased
difficulty. This variance blurs the line that defines state of
the art and greatly motivates increasing current OBJECTNAV
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Figure A3. Agent success decreases when goals become more
distant, and tethered agent is relatively worse at more distant goals.

dataset sizes.
We also provide the tethered agent’s performance; they pref-
erentially succeed on shorter paths relative to the base agent,
which can succeed on even very distant goals Fig. A3.

A.2. Sparse Reward Reduces Exploration and
Causes Quitting

The tether agent performs worse than the base agent. We
note two primary reasons in Fig. A4: reduced exploration
(top) and early quitting due to estimation error (bottom). In
particular the early quitting is likely a general symptom of
using sparse reward. On episodes that are difficult, either
due to environmental characteristics (e.g. it is outside) or due
to goals (e.g. clothes, which is difficult at train time), value
estimates will occasionally dip below 0 and cause the agent
to randomly stop. This may be mitigated by an increased
discount factor.

A.3. Train-Val Gap

Though Table 3 suggests virtually no overfitting, our agent
does appear to begin moderately overfitting past 0.5 success
in Fig. A5.

A.4. 2D vs 3D GPS Comparison

Though we train with the 3D GPS sensor provided by the
simulator, all presented results have used a 2D GPS without
the vertical dimension at evaluation, to be consistent with
Habitat Challenge settings. We compare 2D vs 3D validation
scores in Table A1. We do not see a large change in perfor-
mance; our agents dos not leverage the vertical dimension
much.
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Figure A4. Top: We plot exploration rate (coverage over time)
for tether and base agents. In both success and failure conditions,
the exploration rate is worse in the tethered agent. Bottom: We
plot value function traces for 100 failure episodes. Tether value
predictions approaches 0 quickly, but due to estimation error also
dips below 0.
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Figure A5. Base 6 Action Agent, training and validation curves.
Note: Training curve is taken directly from training logs, i.e. it
evaluates statistics on the rollout and not on the whole training set.

A.5. Additional Auxiliary Task Ablations

We provide 2 additional ablations: 1. removing SGE by
turning it into a feature and 2. removing all auxiliary tasks
(and using one large RNN). Results are in Table A2.
SGE works better as a feature than as an auxiliary task
(row 2 vs 3). Since SGE is a feature that is easily derived
from the semantic input, its large contribution to learning
efficiency may feel unintuitive. However, when we encour-
age SGE by decoding it with an auxiliary task, performance

Success % (↑) SPL % (↑)

1) 4-Action 34.4(33.6) 9.58(9.52)

2) 6-Action 30.8(30.4) 7.60(7.28)

3) 6-Action + Tether 26.6(27.5) 9.79(9.23)

Table A1. Comparing VAL scores when providing vertical dimen-
sion in GPS. Formatted as 2D (3D). There is little difference in
performance.

Success % (↑) SPL % (↑)

1) 4-Action 34.4±2.0 9.58±0.75

2) - SGE 20.3±1.7 4.14±0.47

3) Aux SGE 17.7±1.6 4.03±0.48

4) No Aux 30.4±2.0 6.56±0.57

Table A2. Additional ablations on 4-action base for 1. incorporat-
ing SGE as an auxiliary task (Aux SGE) and 2. not providing any
auxiliary tasks (No Aux).
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Figure A6. We provide breakdown of tether failure modes.

counterintuitively decreases. The auxiliary task is easily
learned, i.e. its loss flatlines near 0 quickly, and module
weights suggest this content is stored in sparsely (i.e. < 10
peaks in the probe weights). This result may warrant addi-
tional investigation to understand what types of priors are
best introduced as auxiliary tasks vs. as features.
Auxiliary tasks contribute to performance (row 1 vs 4).
If we remove all auxiliary tasks, performance drops moder-
ately.

A.6. Behavioral Analysis Details

We provide a failure mode breakdown for the tethered
agent (Fig. A6). The tethered agent fails minimally from
exploration-reward specific failures (e.g. “Commitment”),



Name Description Rule

Plateau Repeated collisions against the same piece
of debris causes a plateau in coverage. In-
cludes debris which traps agent in spawn.

Agent collides > 50 times before visiting 2
new voxels.

Loop Poor exploration due to looping over the
same locations or backtracking.

Episode > 250 steps, expected fraction of
episode spent in current voxel > 0.15 and
collisions < 50.

Detection Despite positive SGE, the agent does not
notice nor successfully navigate to the goal.

Max SGE seen in episode ∈ [0.02, 0.1].

Commitment Sees and approaches the goal but passes it. In first 200 steps, SGE > 0.1 and goal dis-
tance < 1.0.

Last mile Gets stuck near the goal. On stop, SGE > 0 and distance is < 1m.

Open Explores an open area without any objects. Coverage > 10 voxels and < 10 collisions.

Quit Quitting despite lack of obstacles. Apply if above rules do not apply and
episode length < 250.

Void The goal is seen through a crack in the mesh,
which appears to disturb agent behavior.

Qualitative.

Goal Bug A goal instance has no associated view-
points where the agent can stop.

Qualitative.

Explore A generic failure to find the goal despite
steady exploration. Includes semantic fail-
ures e.g. going outdoors to find a bed.

The default if no other modes apply.

Table A3. Description of observed failure modes for 6-action agents and associated heuristics.

but qualitatively fails from a “Quitting” mode often, where
the agent stops despite reasonable exploration and no goal in
sight. We also provide a full list of observed failure modes
(Table A3), along with quantitative heuristics which is con-
sistent with manual annotations > 80% of the time, to help
give a sense of the annotation criteria.

A.7. Action Entropy to quantify agent instability.

Throughout our analysis we have referred to unstable agent
behavior. We quantify this instability by measuring action
entropy, i.e. the entropy of the distribution of actions taken
over the course of each episode. Specifically, we measure
for each episode the action entropy of a rolling window of
10 steps, averaged across window locations, and show how
its distribution differs between agents and episode success
or failure in Fig. A7.

A.8. Additional Probing Results

We additionally run probes for time spent in location (as in
the “loop” failure mode), room ID, and distance to goal, as
shown in Fig. A8. These features appear negligibly repre-
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Figure A7. We plot the average action entropy of a rolling window
as measured on 300 VAL episodes, for 2 agents and with and without
GT segm. Failures tend to correlate with higher action entropy,
more strongly for the tethered agent. Predicted segm. pulls action
entropy toward an intermediate value for the tethered agent i.e.
destabilizes successful episodes, and stabilizes failure episodes. GT
and predicted segmentation effects are muted for 6-action agent,
perhaps due to its wandering behavior.

sented across beliefs.
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Figure A8. We run the same probing procedure for visit count
(number of timesteps spent in current voxel), distance to goal, room
category (room category reports classification accuracy instead of
R2). Visit count and room category is better matched by timestep
than any belief, and distance to goal R2 is at best around 0.1.

A.9. Curvature Computation

We use curvature to summarize the stability of a given se-
quence of representations x1 . . . xt. We start by calculating
normalized displacement vectors vi = xi+1−xi, v̂i =

vi
||vi|| .

We compute the local discrete curvature as the angle between
successive vectors: ci = arccos(v̂i, ˆvi+1). Then we report
the global curvature of the sequence as the mean of these
local curvatures. This procedure mirrors [16]. Global curva-
tures reported in text are averaged over validation episodes.

A.10. Fixed Point Analysis Methodology

Fixed point (FP) analysis of RNNs center around the idea
that an RNN’s nonlinear dynamics and computation can be
understood through its behavior around a set of “slow (fixed)
points.” These points act as a dynamical skeleton which e.g.
determines the flow field at other points in hidden space. For
example, it has been shown that sentiment analysis RNNs
act as line attractors, where the hidden state’s position along
a line represents the read out sentiment [21].
FP analysis begins with an optimization to identify these
slow points, i.e. hidden states that satisfy ||RNN(h, ϕ) −

h||2 < ϵ, for some input ϕ and threshold ϵ. For this initial
analysis we follow [22] and let ϕ be the average input, i.e. the
average of observation embeddings collected across the 300-
episode VAL subset. Note that this average includes an SGE
> 0 signal; in case this has large impact on belief dynamics,
we verified that fixed point results were qualitatively similar
after setting this signal to 0. We optimize 10K fixed points,
by sampling 10K random hidden states experienced in the
300-episode subset and performing gradient descent.
We optimize fixed points for each belief, on each agent; by
optimization termination most points have an RNN update
norm < 1 × 10−6, though we take a subset with norms
< 4× 10−7. From this population of slow points we sample
50 points for Fig. 5. Then, we compute the Jacobian of the
RNN update with respect to the hidden state, and compute
the Jacobian’s eigendecomposition. The Jacobian will likely
have complex eigenvalues; to convert these into a term rep-
resenting memory, we compute a time constant (as in [22]:

τ(λ) = | 1

log ||λ||
| (10)

We show an example eigenvalue spectrum and associated
time constants in Fig. A9. There does not appear to be large
variation in spectra across fixed points.

A.11. High Dimensional Computation in RNNs

Prior works find FPs to be arranged in low-dimensional man-
ifolds and are able to directly link RNN memory structure to,
e.g., ring attractors and simplicial structures. We find that the
RNN FP subspace for OBJECTNAV is high-dimensional, as
measured e.g. by the participation ratio of the fixed point sub-
space. We believe this is due to 1) OBJECTNAV being con-
siderably more complex than previously studied tasks, and 2)
unconverged training. This high-dimensionality makes it is
difficult to clearly link agent beliefs to any known attractors,
e.g. inputs project to > 3 dimensions. Though we observe
certain behavioral phenomena that we expect to be reflected
in RNN dynamics, e.g. the agent will do a near 360° when
it is blocked, we find this difficult to visualize. We show
examples fixed point subspaces for 3 beliefs in Fig. A10.
These layouts are not qualitatively consistent across agents,
nor beliefs, even though memory structure is.
While 20D fixed point subspaces do frustrate current tech-
niques, we could alternately be surprised that the RNN which
has 196 dimensions has such a relatively low-dimensional
subspace. It would be valuable to both the vision community
and beyond to understand how to scale up this technique to
a moderately higher number of dimensions.
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Figure A9. As an example, for the Jacobians of 10 sample fixed
points from the PBL belief of the tether agent, we plot Top: their
eigenvalues, Bottom: the associated time constants. Different fixed
points have different colors.

A.12. Agent Embedding Visualization

A common way to gain intuition for agent knowledge is
by examining agent embedding layers. Our agent incorpo-
rates two semantic embedding layers, one which embeds
the semantic frame (for the ResNet), and one which embeds
the semantic goal; we visualize the goal embedding with
PCA in Fig. A11. It is difficult to draw falsifiable conclu-
sions about these embeddings. For example, though there
are promising clusters of (table, chair, cushion) and (toilet,
sink, bathtub, shower) goals, this is also confounded as those
same categories tend to have high average success or failure,
respectively; i.e. instead of room semantics, the embeddings
may simply imply goal difficulty. We do not show the se-
mantic channel embedding as there does not appear to be
any meaningful arrangement in PC-space.

A.13. Tethered Policy Updates

We tether a second policy to the acting policy by sharing a
base network (we only split policies at the linear actor-critic
heads) and training the second policy with a different reward.
The first policy is naturally off-policy for the second policy;
we thus incorporate V-Trace-like [10] off-policy importance
weighting terms into the standard on-policy PPO update.
Specifically, we 1. replace the tethered policy gradient ratio

CPC|A-4
Single Point

PBL | Global PR: 18 Local PR: 19

CovPred | Global PR: 24 Local PR: 23

Figure A10. For all beliefs of the tether agent, we plot fixed
points (colored by goal category of the state that the fixed point was
initialized at) along with sample hidden state trajectories (connected
with lines). Plots are in the top-2 PCs of the hidden states. Layouts
are different across beliefs, but the top-2 PCs only account for a
moderate amount of variance among the fixed points. The RNN
correseponding to CPC|A-4 only has 1 unique fixed point, but it is
not solely an attractor.

r = πtether(a|s)
πtether

old (a|s) with πtether(a|s)
πact

old(a|s)
and 2. add a clipped importance

weight term c to the value function target from

vs = V (xs) +

s+n−1∑
t=s

γt−sτδtV

to

vs = V (xs) +

s+n−1∑
t=s

γt−sτclip(
πtether(a|s)
πact(a|s)

, a, b)δtV
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title indicates that participation ratio (approximate dimensionality)
of goal is around 10.

With δtV = rt + γVxt+1
− Vxt

being a TD for V . We
set clip terms a = 0.01, b = 1.0. The overall RL loss (both
actor and critic losses) are averaged across policies, i.e. equal
weighting of acting and tethered policy loss.

A.14. Training and Auxiliary Task Details

We train our agent via Proximal Policy Optimiza-
tion PPO) [31] with Generalized Advantage Estimation
(GAE) [30] and using the Adam optimizer [19]. Agent
parameter counts were all 5− 6 million parameters, exclud-
ing parameters in auxiliary modules. This amounts to GRU
hidden sizes of 196 (except for the No Aux ablation, which
has 512). General hyperparameters follow [40]:

Rollout Workers: n = 4 (11)
Rollout Length: t = 128 (12)

PPO Epochs = 4 (13)
PPO Mini-batches = 2 (14)

Discount γ = 0.99 (15)
GAE τ = 0.95 (16)

lr = 2.5× 10−4 (17)

Adam ϵ = 1× 10−5 (18)
Gradient Norm Cap = 0.5 (19)

PPO Clip = 0.2 (20)

except PPO Clip factor, which was set to 0.2 instead of 0.1,
as per recommendations in [38].
Our complete loss is:

Ltotal(θm; θa) = LRL(θm)− αHaction(θ) + LAux(θm; θa)

(21)

LAux(θm; θa) =

nAux∑
i=1

βiLi
Aux(θm; θia)− µHattn(θm) (22)

mIoU mRecall mPrecision Acc

tr
ai

n 40-class 77.09 86.46 87.22 91.62

21-class 37.13 92.25 39.23 81.96

va
l 40-Class 24.95 36.96 39.62 61.88

21-Class 15.93 39.45 21.65 69.01

Table A4. RedNet [18] performance on the MP3D dataset after
tuning on 40 MP3D categories, or after tuning on 21 goal categories.
Note that these numbers include accuracy on VOID class which
skew numbers (especially accuracy) upward.

Hattn is the entropy of the attention distribution over the
different auxiliary tasks. We set α = 0.01 for 4-action
agents (as in [40]) and α = 0.0075 for 6-action agents. We
set µ = 0.075, which amounts to belief weighting across to
be ≈ equal; we find little difference when weighting is more
flexible. Auxiliary task loss coefficients β were determined
such that the loss terms were in the same order of magnitude
at initialization.
For extended details, the configurations of our experiments
are available in the code release.

A.15. Rednet Tuning

We use RedNet to predict segmentation from RGBD at test
time. We finetune the model (which was pretrained on SUN-
RGBD) with 100K randomly sampled front-facing views
rendered in the Habitat simulator (16K validation views).
This procedure is the one used in [3]. We initially trained
the model to segment all 40 MP3D categories; we present
its accuracies in Table A4. Unlike our agent, this RedNet
is greatly overfit. Since our agent did not appear to greatly
leverage semantic cues during exploration (through Section
4.1, Section A.12), we reduced the complexity of the Red-
Net task by asking it to only segment the 21 goal categories
(other categories were cast to VOID). This improves perfor-
mance of segmentation on the goal categories, and resulted
in slight improvement in validation scores after 10M frames
of agent tuning, so we used it in the main text.

A.16. Negative Results

In the course of our experiments, we found that:

• Adding a curiosity module (ICM [25]) as non-episodic
intrinsic reward failed to change performance significantly.

• Forcing agent recall (to fix the “loop” failure mode) with an
Action Recall auxiliary task failed to change agent perfor-
mance. This task was implemented as ADP with a negative



horizon.

• Controlling the agent’s sense of time by projecting beliefs
out of the probed time dimension was unstable. We could
not e.g. solve “Commitment” failure modes by setting the
time variable to near end-episode without degrading perfor-
mance.

A.17. RedNet vs GT with CI

We present a full version of Table 3 with 95% CI estimates
in Table A5.



Success % (↑) SPL % (↑)

TRAIN VAL TRAIN VAL

1) 4-Act 50.3±5.7 ( 36±5.5 ) 43.3±5.6 ( 34.4±2.0 ) 18.1±2.7 ( 12.4±2.3 ) 12.3±2.1 ( 9.58±0.75 )

2) 6-Act 56±5.6 ( 21.7±4.7 ) 58.0±5.6 ( 30.8±1.9 ) 21.5±2.9 ( 8.24±2 ) 16.9±2.3 ( 7.60±0.64 )

3) 6-Act + Tether 54±5.7 ( 27.3±5.1 ) 48.7±5.7 ( 26.6±1.9 ) 27.9±3.5 (11.5±2.5 ) 19.1±2.7 ( 9.79±0.82 )

Table A5. Performance on a 300-episode subset of TRAIN and VAL splits, reported as “with GT segmentation (with RedNet segmentation)”.
Reproducing Table 3 with 95% CIs included. Bold values are significantly better (p < 0.05) than non-bold values in a paired t-test on 300
episodes. Note that the VAL performance with RedNet is reported on the full split, taken from the primary experiments.


