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1. Overview
In this supplementary file, we will give more detailed

information as mentioned in the main paper. We add
the word “Extended” in the section title to mean that
the section contains extended information about the
corresponded section in the main paper.

2. The H2O Handover Dataset, Extended
2.1. The Video Recording Setup

Alongside this supplementary file, we attach a video
demo to show how we record the handover process in
action. The main view is recorded by a Redmi K30
pro smart phone, which is not one of the 5 RGB-D
cameras. We only use Redmi to show how a director
works during recording.

As for the RGB-D stream, we select 3 of all 5 views
to show up in the video, which is only for demonstra-
tion. When building the H2O dataset, all 5 RGB-D
streams are recorded and stored in the dataset.

2.2. Task­Oriented Intention

We pre-define common tasks for all 30 objects, and
the volunteers should pick one for task-oriented han-
dover. The tasks are borrowed some from ContactPose
[?], but we also add a few if other high-priority options
exist in the daily life. The full list can be referred to
Table ??. Note, the ”casual” is default for all the ob-
jects, thus we don’t mention it in the Table ??. The
object name follows the convention of YCB object [?]
and ContactPose [?].

2.3. Image Split and Statistics

We have mentioned the essential part of the dataset
statistics in the main paper. In this section, we will
add some details about the dataset.

Handover-wise Statistics In H2O dataset, we have
recorded 6K handover process which contains 40 giver-
receiver pairs passing over 30 objects under 5 cam-
eras. For each handover video, we split them into 3
stages (namely pre-handover, physical handover and
post-handover) and result in a total of 18K video clips.

Object Name Task List
ContactPose

apple eat; wash
banana peel

binoculars see through
bowl drink from; catch sth.; wash

camera take a picture
cell phone talk on

cup drink from; wash
eyeglasses wear
flashlight turn on; sweep
hammer hit a nail; push; sweep

headphones wear
knife cut

light bulb screw in a socket
mouse use to point and click
mug drink from; wash
pan cook in

PS controller play a game with
scissors cut with
stapler staple

toothbrush brush teeth
toothpaste squeeze out toothpaste

Utah teapot pour tea from; wash
water bottle open
wine glass drink wine from

YCB
Scrub Cleanser bottle squeeze; screw; pour

French’s Mustard bottle squeeze; screw; pour
Spam Potted Meat can open the lid

Power Drill pull the trigger; hold
Scissors cut with

Large marker write; pull off the hat
Table 1. The object and its intended tasks when requested.

Stage-wise Statistics In H2O dataset, among all 5M
image frames, the pre-handover stage contains 2.5M
frames, the physical handover stage contains 1M
frames and the post-handover stage 1.5M frames. The
pre-handover stage can be used for tasks such as hand
pose estimation, hand-object pose estimation (inter-
action reconstruction), trajectory prediction etc. The
physical handover stage can be used for analyze how



two hands interact with one object, such as the pro-
posed task Receiver Grasp Prediction. The post-
handover stage contains rich task-oriented grasp infor-
mation. Different stage of handover process has differ-
ent features in itself, thus can support multiple tasks.

When spliting the dataset for hand-object interac-
tion and receiver grasp prediction, we randomly select
500 video clips in the pre-handover subset for validation
and other 500 for testing. We don’t seek the method
can be generalized to unseen object, but unseen hand
configuration. Thus all the objects can be seen during
training and testing.

3. RGPNet, Extended
3.1. Hand­Object Area Extraction

We first detect the hand-object region with a pre-
trained detector [?], which predicts both the hand and
the object bounding box. Then we merge the hand-
object bounding box pairs to form a larger bounding
box if the two bounding boxes overlap larger than 10%,
which is set empirically. The merged bounding box is
then enlarged 1.2 times on both width and height. To
note, if the object or the hand is not detected, due
to occlusion, we just enlarge the bounding box of the
hand with the same ratio.

4. Experiments & Results, Extended
4.1. Results on H2O­Syn Dataset

When training on H2O-Syn dataset, we change the
background with COCO [?] dataset. The background
is randomly selected. We report both results on the
test split of H2O and H2O-Syn dataset.

Hand-object Interaction Reconstruction For hand-
object interaction reconstruction task, we adopt the
same baseline methods as in the main paper. The re-
sults are reported in Table ??. When train and test in
the same domain (H2O-Syn), the object error and hand
error is at the same level of the H2O results which are
reported in the main paper. It is as expected, since the
object pose and hand pose is the same. On the other
hand, it is noteworthy that the object pose is affected
more than the hand pose when suffering the domain
gap between H2O-Syn and H2O.

Receiver Grasp Prediction For receiver grasp predic-
tion task, we also implement both RGPNet and RG-
PNet with grasp type prediction. The results are re-
ported in Table ??. Since the receiver grasp prediction
depends on the result of hand-object interaction recon-
struction, due to the domain gap between the H2O-Syn

Test Split Method Object error Hand error
H2O-Syn Tekin et al. [?] 27.6 18.7

Hasson et al. [?] 26.3 19.5
H2O Tekin et al. [?] 31.3 19.8

Hasson et al. [?] 29.4 22.6
Table 2. Hand-object reconstruction results. Training on
H2O-Syn pre-handover subset, testing on H2O-Syn and
H2O pre-handover subset respectively. The errors are mea-
sure in mm.

Test Split Method Grasp Score ↑ Interp. ↓
H2O-Syn RGPNet 0.63 22

RGPNet + grasp type 0.66 21
H2O RGPNet 0.46 33

RGPNet + grasp type 0.52 31
Table 3. Receiver grasp prediction results. ↑ means the the
higher the better; ↓ means the lower the better.

and H2O dataset, especially the prediction of object
pose, the grasp score and interpenetration error suffer
a rather large loss.

4.2. Implementation Details

In this section, we will describe the detailed archi-
tecture of the RGPNet.

For the Generator, the dimension of the global fea-
ture F is 256. We have also tried with other numbers
such as 128, 512, but found no significant difference in
practice. The following 4 branches of prediction net-
work (denoted as ”FC”) shares the same architecture
which has 3 fully connected layers. The input and out-
put dimension for each layer is (256, 512), (512, 1024),
(1024, K) respectively, where K is different for differ-
ent output. For example, K = 4 for predicting ∆Rw,
K = 3 for predicting ∆tw, K = 10 for predicting ∆β,
and K = 45 for predicting ∆θ.

For the Discriminator, it is a 3-layer fully connected
network. The input and output dimension for each
layer is (124, 512), (512, 1024), (1024, 2). The input
dimension 124 is resulted from sum of the ∆H (62 =
4 + 3 + 10 + 45) multiplying 2.

4.3. Variant RGPNet with Grasp Type Prediction

When grasp type [?] is predicted, the RGP-GAN
need a little adaptation for grasp type prediction.
Specifically, alongside the global feature F predicted
from the ResNet-18 [?], we also make a prediction of
the grasp type, which is one-hot encoded and opti-
mized by a cross-entropy loss. Then, the predicted
hand is reformulated as H = H ′

pre +Ho +∆H, where
Ho = {βo, θo, 0} is the default hand configuration for
each grasp type, and H ′

pre = {0, 0, Pw,pre}. In other
words, when predicting with grasp type, the receiver’s



hand configuration is regarded as a relative transfor-
mation from the default grasp template, and the hand
wrist pose is a relative transformation from the giver’s
hand wrist.
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