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1. Overview
In this supplemental material, we first show the performance comparison of our proposed PNAL with different methods

on artificially created asymmetric noisy S3DIS, by following the setting in image noisy label learning works. Then, we show
our statistics for ScanNetV2 validation set to get a deeper understanding of the noise level of real-world noisy datasets.
Finally, we show more visualization results on the ScanNetV2 validation set and provide insights for future studies.

2. Performance Comparison on Asymmetric Noise
Consistent with our observations on real-world noisy dataset ScanNetV2, we designed the “asymmetric noise” as a com-

bination of asymmetric and symmetric noise. The presence of asymmetric noise is due to the similarity among the confusing
categories. And symmetric noise exists because of the wrong category selection during the labeling process, i. e. Fig. 1 in
the paper, where the floor is labeled as a chair. Thus, the annotator introduces noise not only in the confusing classes, but
also in the other classes, with random annotation errors.

Different from the “asymmetric noise” (τpair = 40%, τ = 60%) setting in the main manuscript, which is a combination
of asymmetric and symmetric noise, here we use only asymmetric noise following the similar setting in the image noisy
label learning works. In other words, we only randomly flip the label with a probability τ between our identified easily
misclassified label pairs, including door-wall, board-window, and sofa-chair, while the labels of the other classes remain
unchanged.

Methods Asymmetric Noise (τ )

20% 40%

DGCNN[5]+CE 0.8288 0.7513
DGCNN[5]+SCE[4] 0.7593 0.7308
DGCNN[5]+GCE[6] 0.7024 0.7006

DGCNN[5]+SELFIE[3]* 0.8565 0.8095
DGCNN[5]+PNAL 0.8635 0.8498

PointNet2[2]+CE 0.8301 0.7442
PointNet2[2]+PNAL 0.8670 0.8321

Table 1. OA comparison of different methods on artificially created noisy S3DIS with asymmetric noise following the setting in previous
works on image.

As shown in Table 1, we report the results in terms of overall accuracy (OA). The first five rows show the comparison
with DGCNN backbone. The performance of DGCNN+CE drops by 0.0404 at 20% asymmetric noise rate and 0.1179 at
40% compared to the baseline that trains on purely clean samples (0.8692). The decline is not as dramatic as with symmetric
noise of Table 1 in the main manuscript, because noises in this traditional asymmetric setting are only present in the easily
confusing classes, which are a small percentage of the whole data. As shown in the second and third rows, the previous
noise robust loss methods SCE and GCE fail to work and even produce worse results. This is expected as they cannot cope
with potentially large noise rates. Though “DGCNN+SELFIE*” shows a significant improvement over the CE results, the
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proposed PNAL can produce much better results than SELFIE. We attribute this to the noise-blind design and local region
correlation modeling. When using PointNet2 as backbone as shown in the last two rows, our PNAL also improves the
performance significantly.

3. Statistics of Noisy Label on the ScanNetV2 dataset

Dataset # Scenes # Noisy Labeled Scenes Ratio

ScanNetV2 312 228 73.3%

Table 2. Statistics of Noisy Label on Real-World Noisy ScanNetV2 validation set.

For a better understanding of the noise issue on the ScanNetv2 dataset, we leverage manual inspection to check the whole
ScanNetV2 validation set. For each scene, there were at least two human inspectors and the scene is counted as mislabeled
when they both agreed that noisy class labels exist in the scene. As shown in Table 2, 228 scenes out of 312 (73.3%) suffer
from label noise issue. Therefore, even though ScanNetV2 is already a re-labeled version of ScanNet, the label noise issue is
widely present in its validation set. This further proves the existence and significance of the noisy labeling problem and the
urgency of the need for a noise-robust framework.

4. Performance on ScanNetV2
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Figure 1. From left to right: Scenes in ScanNetV2 validation set, GT labels given by ScanNetV2, predictions of SparseConvNet [1], and
predictions of [1]+PNAL. Ours get more reasonable labels than GT labels.

We show more scene visualization examples from the validation set of ScanNetV2 in the Fig. 1, where our method
gets more reasonable results than the baseline method and even than GT. These visualization results further illustrate the
existence and complexity of real-world label noises. Specifically, the GT labeling error in the second and fourth rows are
from confusing category pairs “photos vs walls” and “shower curtains vs curtains”,which fit the asymmetric noise pattern. For
the first and third row, unlike the aforementioned noise types, their labeling error pattern are sample-related, called instance-
and label-dependent noises. Owing to its complexity, modeling this kind of noise has not been extensively investigated yet.
In the future, studying more diverse label noises in point cloud segmentation would be a great research direction.
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