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A. The proof of Theorem 1

Theorem 1 Let S̃(t−i+1)
i and Si be two joint distributions over X × Y . Let τ : Y × Y → [0, 1] be a symmetric and

bounded loss function ∀(y, y′) ∈ Y2, τ(y, y′) ≤ M that obeys the triangle inequality, where M is a positive number. Let
hi = arg minh∈HR(h, Si) and h̃(t−i+1)

i = arg minh∈HR(h, S̃
(t−i+1)
i ) represent the ideal classifiers for Si and S̃(t−i+1)

i ,
we have:

R (h, Si) ≤ R′
(
h, h̃

(t−i+1)
i , S̃

(t−i+1)
i

)
+Ψ

(
Si,X , S̃

(t−i+1)
i,X

)
+σ(Si, S̃

(t−i+1)
i ) (1)

where

σ(Si, S̃
(t−i+1)
i ) = R′(h∗i , hi, Si)+R′(hi, h̃

(t−i+1)
i , S̃

(t−i+1)
i ) (2)

and
R′(hi, h̃

(t−i+1)
i , S̃

(t−i+1)
i ) = E

x∼S̃(t−i+1)
i,X

τ(hi(x), h̃
(t−i+1)
i (x)) (3)

where h∗i is the true labeling function for Si.

Proof Firstly, we consider R(h, Si) ≡ R′(h, h∗i , Si). We adopt similar derivations to those used for Domain Adaptation
theory [10]. We consider fixing the classifier h ∈ H. According to the triangle inequality property of R(·) and R′(·) and
Definition 3 from the paper, see the discrepancy distance Ψ(·, ·) from equation (14) from page 5 of the paper, we have:

R′(h, h∗i , Si) ≤ R′(h, h̃
(t−i+1)
i , Si) + R′(hi, h̃

(t−i+1)
i , Si) + R′(hi, h

∗
i , Si)

≤ R′(h, h̃
(t−i+1)
i , S̃

(t−i+1)
i ) + R′(hi, h̃

(t−i+1)
i , S̃

(t−i+1)
i ) + R′(hi, h

∗
i , Si) + Ψ(Si,X , S̃

(t−i+1)
i,X )

�

(4)

This proves Theorem 1.

B. The proof of Theorem 2

Theorem 2 Let S̃(t−i+1)
i be the joint distribution over X × Y . Let τ : Y × Y → [0, 1] be a symmetric loss function, which

obeys the triangle inequality and ∀(y, y′) ∈ Y2, τ(y, y′) ≤ A, where A is a positive number. The accumulated errors in the
knowledge associated with a previously learnt i-th task, after learning a newly given t-th task, can be defined as :

R(h, Si) ≤ R′(h, h̃
(t−i+1)
i , S̃

(t−i+1)
i ) +

t−i∑
k=0

(
Ψ(S̃

(k)
i,X , S̃

(k+1)
i,X ) + σ(S̃

(k)
i , S̃

(k+1)
i )

)
(5)

where
σ(S̃

(k)
i , S̃

(k+1)
i ) = R′(h̃

(k)
i , h̃

∗(k)
i , S̃

(k)
i ) + R′(h̃

(k)
i , h̃

(k+1)
i , S̃

(k+1)
i )

.

It notes that h̃∗(k)i is the true labeling function for S̃(k)
i , which outputs label y for a giving sample x ∼ S̃(k)

i,X .

Proof Firstly, we take S̃(t−i+1)
i and S̃(t−i)

i to be the source and the target domain and we then have a bound, according to
Theorem 1:

R′(h, h̃
(t−i)
i , S̃

(t−i)
i ) ≤ R′(h, h̃

(t−i+1)
i , S̃

(t−i+1)
i ) + Ψ(S̃

(t−i+1)
i,X , S̃

(t−i)
i,X ) + σ(S̃

(t−i)
i , S̃

(t−i+1)
i ) (6)

Furthermore, we take S̃(t−i)
i and S̃(t−i−1)

i to be the source and the target domain and we then have a bound:

R′(h, h̃
(t−i−1)
i , S̃

(t−i−1)
i ) ≤ R′(h, h̃

(t−i)
i , S̃

(t−i)
i ) + Ψ(S̃

(t−i)
i,X , S̃

(t−i−1)
i,X ) + σ(S̃

(t−i)
i , S̃

(t−i−1)
i ) (7)

It notes that S̃(t−i+1)
i and S̃(t−i)

i denote the model which was trained on the i-th task for (t− i+ 1) and (t− i) times, re-
spectively. So the risk bound is reasonable for Eq (6). We also know that R′(h, h̃

(t−i)
i ,S̃

(t−i)
i ) = E

x∼S̃(t−i)
i

τ(h(x), h̃
(t−i)
i (x))



where h̃(t−i)i represents the classifier to be trained on the i-th dataset for (t − i) times. After summing up the left-hand side
and the right hand side of Eq. (6) and Eq. (7), we have :

R′(h, h̃
(t−i)
i , S̃

(t−i)
i ) + R′(h, h̃

(t−i−1)
i , S̃

(t−i−1)
i ) ≤ R′(h, h̃

(t−i)
i , S̃

(t−i)
i ) + R′(h, h̃

(t−i+1)
i , S̃

(t−i+1)
i )

+ Ψ(S̃
(t−i)
i,X , S̃

(t−i−1)
i,X ) + σ(S̃

(t−i)
i , S̃

(t−i−1)
i )

+ Ψ(S̃
(t−i+1)
i,X , S̃

(t−i)
i,X ) + σ(S̃

(t−i)
i , S̃

(t−i+1)
i )

(8)

Then, when moving the first term of the left hand side to the right-hand side in Eq 8, results in:

R′(h, h̃
(t−i−1)
i , S̃

(t−i−1)
i ) ≤ R′(h, h̃

(t−i)
i , S̃

(t−i)
i )− R′(h, h̃

(t−i)
i , S̃

(t−i)
i )

+ R′(h, h̃
(t−i+1)
i , S̃

(t−i+1)
i ) + Ψ(S̃

(t−i)
i,X , S̃

(t−i−1)
i,X )

+ σ(S̃
(t−i)
i , S̃

(t−i−1)
i ) + Ψ(S̃

(t−i+1)
i,X , S̃

(t−i)
i,X ) + σ(S̃

(t−i)
i , S̃

(t−i+1)
i )

(9)

We rewrite the above equation as :

R′(h, h̃
(t−i−1)
i , S̃

(t−i−1)
i ) ≤ R′(h, h̃

(t−i+1)
i , S̃

(t−i+1)
i ) + Ψ(S̃

(t−i)
i,X , S̃

(t−i−1)
i,X )

+ σ(S̃
(t−i)
i , S̃

(t−i−1)
i ) + Ψ(S̃

(t−i+1)
i,X , S̃

(t−i)
i,X ) + σ(S̃

(t−i)
i , S̃

(t−i+1)
i )

(10)

Similarly with the above derivations, we can consider S̃(t−i−1)
i and S̃(t−i−2)

i to be the source and the target domain and
then we have a bound:

R′(h, h̃
(t−i−2)
i , S̃

(t−i−2)
i ) ≤ R′(h, h̃

(t−i−1)
i , S̃

(t−i−1)
i ) + Ψ(S̃

(t−i−1)
i,X , S̃

(t−i−2)
i,X ) + σ(S̃

(t−i−1)
i , S̃

(t−i−2)
i ) (11)

We then sum up the left hand side and the right hand side of Eq. (11) and Eq. (10), resulting in:

R′(h, h̃
(t−i−2)
i , S̃

(t−i−2)
i ) + R′(h, h̃

(t−i−1)
i , S̃

(t−i−1)
i ) ≤ R′(h, h̃

(t−i+1)
i , S̃

(t−i+1)
i ) + R′(h, h̃

(t−i−1)
i , S̃

(t−i−1)
i )

+ Ψ(S̃
(t−i)
i,X , S̃

(t−i−1)
i,X ) + σ(S̃

(t−i)
i , S̃

(t−i−1)
i )

+ Ψ(S̃
(t−i+1)
i,X , S̃

(t−i)
i,X ) + σ(S̃

(t−i)
i , S̃

(t−i+1)
i )

+ Ψ(S̃
(t−i−1)
i,X , S̃

(t−i−2)
i,X ) + σ(S̃

(t−i−1)
i , S̃

(t−i−2)
i )

(12)

The second term of the left-hand side and the second term from the left-hand side in Eq. (12) are equal and would cancel
each other. We observe that the term R′(h, h̃

(t−i+1)
i , S̃

(t−i+1)
i ) remains in the right hand side. We can continue the derivation

by using mathematical induction.
From Theorem 1 we have :

R (h, Si) ≤ R′
(
h, h̃1i , S̃

1
i

)
+Ψ

(
Si,X , S̃

1
i,X

)
+σ(Si, S̃

1
i,X) (13)

Eventually, by considering the derivation through induction by repeating Eq. (12) and replacing into Eq. (13) we have :

R(h, Si) ≤ R′(h, h̃
(t−i+1)
i , S̃

(t−i+1)
i ) + Ψ(Si,X , S̃

(1)
i,X) + σ(Si, S̃

(1)
i,X) +

t−i∑
k=1

(
Ψ(S̃

(k)
i,X , S̃

(k+1)
i,X ) + σ(S̃

(k)
i , S̃

(k+1)
i )

)
(14)

In order to simplify the expression (Eq. (14)), we allow Si,X and Si to be denoted by S̃(0)
i,X and S̃(0)

i , respectively. Then
Eq. (14) can be rewritten as :

R(h, Si) ≤ R′(h, h̃
(t−i+1)
i , S̃

(t−i+1)
i )+

t−i∑
k=0

(
Ψ(S̃

(k)
i,X , S̃

(k+1)
i,X ) + σ(S̃

(k)
i , S̃

(k+1)
i )

)
(15)



C. The proof of Lemma 1
Lemma 1 Let us consider that we satisfy the Assumption 1 and the accumulated error after learning the probabilistic repre-
sentations of all databases after the t-th task learning is defined as:

t∑
i=1

R(h, Si) ≤
t∑
i=1

(
R′(h, h̃

(t−i+1)
i , S̃

(t−i+1)
i ) +

t−i∑
k=0

(
Ψ(S̃

(k)
i,X , S̃

(k+1)
i,X ) + σ(S̃

(k)
i , S̃

(k+1)
i )

))
. (16)

We consider the results of Theorem 2 and sum up the accumulated errors from Eq. (5) for learning t tasks and this results in
Eq. (16). From Lemma 1, we observe that if i is small, indicating that a task was learnt in one of the initial training stages of
the model, then after the training with a series of new tasks, the terms

∑t−i
k=0 τ(S̃

(k)
i,X , S̃

(k+1)
i,X ) + σ(S̃

(k)
i , S̃

(k+1)
i ) accumulate

likely leading to large errors. This explains thatM(θt, ςt, ϕt) would tend to forget the tasks learnt earlier during its lifelong
learning process. In order to investigate this process, we train a single model with GRMs under the MNIST, SVHN, Fashion
and CIFAR10 (MSFC) where we only evaluate the target accumulated risk of the model on MNIST. We also train the model
under the SVHN, Fashion, MNIST and CIFAR10 (SFMC). We present the results in Figure 1, where i = 1 and i = 3
represent the risk on MNIST for the learning settings MSFC and SFMC, respectively. The results show that the model tends
to forget earlier learnt tasks than those tasks which have been learnt more recently.

Task1 Task2 Task3 Task4

Figure 1. The target risk of a single model with GRMs, evaluated on MNIST during lifelong learning.

D. The proof of Lemma 2
Lemma 2 Let τ : Y × Y → [0, 1] be a symmetric loss function, which obeys the triangle inequality and ∀(y, y′) ∈
Y2, τ(y, y′) ≤ A. Let H be the classifier space. We assume that we have learned an infinite mixture model which con-
tains K number of components after the t-th task learning. If K = t, then the accumulated errors of the infinite mixture
model for all tasks is defined as:

t∑
i=1

R (h, Si) ≤
t∑
i=1

(
R′(h, h̃1i , S̃

1
i )+Ψ(Si,X , S̃

1
i,X) + σ(Si, S̃

1
i )
)

(17)

Proof Since our mixture model has K number of components, where each component is only trained once on a certain
database during the lifelong learning. So the accumulated error of a certain component on the i-th database is, according to
Theorem 1, given by:

R(h, Si) ≤ R′(h, h̃1i , S̃
1
i )+Ψ(Si,X , S̃

1
i,X) + σ(Si, S̃

1
i ) (18)



where S̃1
i represent the training set of the i-th task. We then sum up the errors of all components on all databases and

this results in the relationship from (17), which proves Lemma 2. We can observe that h in Eq. (17) is implemented as K
classifiers {hς1 , . . . , hςK}, hς1 ∈ H. So we can rewrite Eq. (17) as :

t∑
i=1

R (hςi , Si) ≤
t∑
i=1

(
R′(hςi , h̃

1
i , S̃

1
i )+Ψ(Si,X , S̃

1
i,X) + σ(Si, S̃

1
i )
)

(19)

From Eq. (19), we can observe that the performance of LIMix on the target distribution is relying on the generalization of
each classifier hςi on the corresponding target distribution.

In practice, the number of components is smaller than the number of learning tasks. We assume that the mixture model adds
a new component in order to learn a new task, where each component models a unique task. Then, a certain mixing component
can be reused to learn the following task, if this task is similar to one of the previously learnt tasks. The accumulated error
of the this mixture model across all tasks is defined as:

t∑
i=1

R(h, Si) ≤

m∑
i=1

(
R′(h, h̃1i , S̃

1
i )+Ψ(Si,X , S̃

1
i,X) + σ(Si, S̃

1
i )
)

+

t∑
i=m+1

 R′(h, h̃
(t−i+1)
i , S̃

(t−i+1)
i )+

t−i∑
k=0

(
Ψ(S̃ki,X , S̃

(k+1)
i,X ) + σ(S̃ki , S̃

(k+1)
i )

) 
(20)

wherem is the number of components in the mixture model and determines the degree of the gap on the risk bound and where
we indicated in the last expression from Eq. (20) that certain mixture components are retrained with the new given tasks. If
m is large, then the resulting gap would be small, otherwise the gap would be larger.

E. The proof of Lemma 3

Lemma 3 Let B = {b1, . . . , bj} represent the labels for the tasks that the corresponding distributions {S̃(1)
b1
, .., S̃

(1)
bj
} is

accessed only once after lifelong learning. Let B′ = {b′1, . . . , b′n} indicate which task was used for refined training, more
than once. We also define a set B̂ = {b̂1, . . . , b̂n} that records how many times each task was used for refined, where b̂i > 1

represents that the b′i-th task has been refined for b̂i times S̃(1)
b′i
→ S̃

(b̂i)
b′i

. After a task has been learnt by the model, we can

access its corresponding probabilistic representation defined by S̃(k)
i , k = 1, . . . , (t− i + 1), where t > 1 represents the

number of tasks. All sets satisfy {B,B′, B̂} $ N∗ where N∗ is the set of all positive integers. Let card(·) be the cardinal
number in the set which satisfies card(B) + card(B′) = K and 0 ≤ card(B) ≤ K, 0 ≤ card(B′) ≤ K, card(B′) =
card(B̂), where K is the number of components used for training the mixture model. We define the risk for a single learned
modelM(θt, ωt, ψt) as Rsingle, as in (16)), while the risk for the mixture model, Rmixture is defined as:

t∑
i=1

R (h, Si) ≤
card(B)∑
i=1

(
R′(h, h̃1bi , S̃

1
bi) + Ψ(Sbi,X , S̃

1
bi,X) + σ(Sbi , S̃

1
bi)
)

+

card(B′)∑
i=1

 R′(h, h̃
(t−b̂i+1)
b′i

, S̃
(t−b̂i+1)
b′i

)+

b̂i−1∑
k=0

(
Ψ(S̃kb′i,X

, S̃
(k+1)
b′i,X

) + σ(S̃kb′ii
, S̃

(k+1)
b′i

)
)
 = Rmixture

(21)

From the above definitions, we have Rsingle ≥ Rmixture.
We can observe that h in Eq. (21) is implemented by several components in LIMix and we omit the component index

for h for the sake of simplification. According to Lemma 3 we do not explicitly indicate which task is associated to which
specific component, but we provide an explicit way to analyze the risk bound for the mixture model in a more practical way,
where the number of components and the number of times each task was trained on, is varying according to different learning
settings (by considering the order of learning the tasks or their complexity). If B′ = ∅, so there is no database used twice



for training, then the right-hand side of Eq. (21) is reduced to Eq. (17), meaning a small gap on the risk bound but requiring
more memory. On the other hand, if card(B) = 1 ⇒ B = {t}, the right hand side of Eq. (21) is equal to Eq. (16) meaning
a large gap on the risk bound. we can define the ratio v = (K − Count(B))/(K − Count(B′)) as a trade-off index which
explains the trade-off between the model complexity and performance. When v increases, the model performs better, while
also having an increased complexity. In contrast, when v is small, then the model has accumulated more error terms but has
a smaller complexity.

In the following, we also provide an expression of Eq. (21) by considering to indicate the component index. Let C =
{c1, . . . , cj} be a set where each ci represents the component index for each bi-th task. Let C ′ = {c′1, . . . , c′n} be a set
where each c′i represents the component index for each b′i-th task. we can observe that c′i could be equal to c′j since a single
component would learn more than one task. Based on these definitions, we provide an expression for Eq. (21) by considering
the component index :

card(B)∑
i=1

R
(
hζci , Sbi

)
+

card(B′)∑
i=1

R
(
hζc′

i
, Sb′i

)
≤

card(B)∑
i=1

(
R′(hζci , h̃

1
bi , S̃

1
bi) + Ψ(Sbi,X , S̃

1
bi,X) + σ(Sbi , S̃

1
bi)
)

+

card(B′)∑
i=1

 R′(hζc′
i
, h̃

(t−b̂i+1)
b′i

, S̃
(t−b̂i+1)
b′i

)+

b̂i−1∑
k=0

(
Ψ(S̃kb′i,X

, S̃
(k+1)
b′i,X

) + σ(S̃kb′ii
, S̃

(k+1)
b′i

)
)
 = Rmixture

(22)
where each hζci ∈ H is a component in LIMix.

Proof Firstly, we consider the risk bound for the tasks that are only trained only once, we have :

card(B)∑
i=1

R (h, Sbi) ≤
card(B)∑
i=1

(
R′(hζci , h̃

1
bi , S̃

1
bi) + Ψ(Sbi,X , S̃

1
bi,X) + σ(Sbi , S̃

1
bi)
)

(23)

Then we derive the risk bound for the tasks that are trained more than once, we have :

card(B′)∑
i=1

R
(
h, Sb′i

)
≤

card(B′)∑
i=1

 R′(h, h̃
(t−b̂i+1)
b′i

, S̃
(t−b̂i+1)
b′i

)+

b̂i−1∑
k=0

(
Ψ(S̃kb′i,X

, S̃
(k+1)
b′i,X

) + σ(S̃kb′i
, S̃

(k+1)
b′i

)
)
 (24)

Then we sum up Eq. 23 and Eq. 24, resulting in Eq. 21.
In the following, we prove Rsingle ≥ Rmixture. We can derive the risk bound for a single model as :

Rsingle =

t∑
i=1

(
R′(h, h̃

(t−i+1)
i , S̃

(t−i+1)
i ) +

t−i∑
k=0

(
Ψ(S̃

(k)
i,X , S̃

(k+1)
i,X ) + σ(S̃

(k)
i , S̃

(k+1)
i )

))
. (25)

Then we consider an extreme case for Rmixture in which the number of components is only two. The first component learns
the first task and is fixed in the following task learning. We then derive Rmixture as :

Rmixture =R′
(
h, h̃11, S̃

1
1

)
+Ψ

(
S1,X , S̃

1
1,X

)
+σ(S1, S̃

1
1)

+

t∑
i=2

(
R′(h, h̃

(t−i+1)
i , S̃

(t−i+1)
i ) +

t−i∑
k=0

(
Ψ(S̃

(k)
i,X , S̃

(k+1)
i,X ) + σ(S̃

(k)
i , S̃

(k+1)
i )

))
.

(26)

where the second component is used to learn the following tasks. It clearly see that Eq. (25) ≥ Eq. (26) since the first task in
Eq. (25) has more accumulated errors and the source risk usually keeps stable during GRMs process (See empirical results
in Fig.2c of the paper). Additionally, If card(B) = 1 ⇒ B= {t}, then Rmixture is equal to Rsingle. As card(B) increase,
Rmixture is decreased. This proves Rsingle ≥ Rmixture.

F. Lemma 4
Lemma 4 Let us define the log-likelihood of the proposed lifelong infinite mixture model. We can evaluate the model log-
likelihood for arbitrary testing data samples during both training and testing stages.



Proof Suppose that we have learned K components at the t-th task learning. Estimating the log-likelihood

log p (x | Θ,Ω, π1, . . . , πK) = log

K∑
j=1

πjpθj (x | z) p (z) (27)

can be done by firstly inferring each component weight πj by using :

vi =
exp (1/(− log pθi(x)))

K∑
j=1

exp
(
1/(− log pθj (x)

)
)

(28)

π ∼ Cat (v1, . . . , vK) (29)

It notes that − log pθi(x) is estimated by ELBO using the i-th component. Cat is a Categorical distribution. Therefore,
the down-stream tasks such as the sample log-likelihood, classification and reconstruction are performed by a selected
component that has the highest sample log-likelihood log pθs(x):

log pθs(x) > log pθi(x),∀i 6= s (30)

�
In the following, we investigate how the proposed LIMix model, described in the paper, can evaluate the sample log-

likelihood across domains during the lifelong learning. We train LIMix under the MNIST, SVHN, Fashion, IFashion and
IMNIST lifelong learning and evaluate the negative log-likelihood (we use the ELBO to estimate the log-likelihood and use
the reconstruction error as the first term in ELBO) by using the Teacher module for testing each dataset. We consider 20
training epochs for each task and provide the results in Figure 2a. We can observe that the Teacher module can maintain the
sample log-likelihood of all prior tasks during the lifelong learning. We also evaluate the sample log-likelihood estimated by
using the Student module and show the results in Figure 2b.

Task1 Task2 Task3 Task4 Task5

(a) Results provided by the Teacher module.

Task1 Task2 Task3 Task4 Task5

(b) Results provided by the Student module.

Figure 2. Negative log-likelihood evaluation by the Teacher and the Student modules in (a) and (b), respectively, for the proposed LIMix
model, under the MNIST, SVHN, Fashion, IFashion, IMNIST lifelong learning.

G. Theoretical analysis for existing lifelong learning models
A single model with GRM: Firstly, we apply the proposed theoretical tool to derive the risk bound for a single model with

GRM [15]. LetM(θt, ωt, ψt) represent this model after learning t tasks, where we also assume that Uϕ : X → T is a perfect
task-inference network that can allow us to form several joint distributions {S̃t1, . . . , S̃1

t }. From Theorem 2, we can define



the risk bound for M(θt, ωt, ψt) after learning t tasks :

R(h, Si) ≤ R′(h, h̃
(t−i+1)
i , S̃

(t−i+1)
i ) +

t−i∑
k=0

(
Ψ(S̃ki,X , S̃

(k+1)
i,X )+σ(S̃ki , S̃

(k+1)
i )

)
, (31)

where each S̃(k+1)
i is approximated by M(θ(k+1), ω(k+1), ψ(k+1)) considering the optimal task-inference network where

k = {0, . . . , (t − i + 1)}. We find that while increasing the number of tasks, the model accumulates more error terms.
This can lead to a large gap on the risk bound. This explains why a single model with only GRMs has limitations when
aiming to learn a long sequence of tasks. We can observe that the approximation distribution S̃ki,X can be implemented by
any generative models such as VAEs and GANS. Therefore, this analysis can also explain most of existing lifelong learning
approaches that use GRMs with a single model [2, 3, 13, 15, 18, 21].

CURL: In the following, we apply this theoretical tool to derive the risk bound for a mixture model enabled with the GRM
and expansion mechanisms [14]. By using the Lemma 3, we can derive a flexible risk bound for the model after learning t
tasks :

t∑
i=1

R (h, Si) ≤
card(B)∑
i=1

(
R′(h, h̃1bi , S̃

1
bi) + Ψ(Sbi,X , S̃

1
bi,X)

+σ(Sbi , S̃
1
bi)
)

+

card(B′)∑
i=1

(
R′(h, h̃

(t−b̂i+1)
b′i

, S̃
(t−b̂i+1)
b′i

)

+

b̂i−1∑
k=0

(
Ψ(S̃kb′i,X , S̃

(k+1)
b′i,X

) + σ(S̃kb′i , S̃
(k+1)
b′i

)
) = Rmixture

(32)

This risk bound can explain the learning conditions when using the model. Especially, when the model does not expand its
network architecture, the risk bound becomes the one from (31). When increasing the number of components in the mixture
model, the model would get a tight bound due to the reduction of the accumulated error terms. This analysis is similar to the
one explaining the proposed LIMix model. When comparing to the CURL model [14], the proposed LIMix model not only
that it expands its network architecture for the inference network but also for the decoder, which benefits overcoming the
forgetfulness issue for some down-stream tasks such as data reconstruction and data log-likelihood estimation. While CURL
continuously updates its decoder when learning a new task, it would lead to a drop when CURL reuses a component to learn
a new task using GRM. For instance, when reusing the b′i-th component for a new task, there would be a large gap between
S̃nb′i,X

, n > 1 and the true marginal distribution Sb′i,X when the number of tasks is large. However, this does not happen in the
LIMix model, given that LIMix updates only a limited set of parameters (those of a sub-decoder), which is part of a decoder
in each task learning while the other parameters of the decoder do not change.

Ensemble: We also apply the proposed theoretical tool to analysis the risk bound for the Ensemble model [17]. With
Lemma 2, we can derive the risk bound for the Ensemble model after the t-th task learning :

t∑
i=1

R (h, Si) ≤
t∑
i=1

(
R′(h, h̃1i , S̃

1
i )+Ψ(Si,X , S̃

1
i,X) + σ(Si, S̃

1
i )
)
. (33)

In this case, the ensemble model does not require the task-inference network or the generator. Each Si can be simply
formed by the data samples from the i-th testing set Di

T and each S̃1
i can be formed by samples drawn from the i-th training

set Di
S and therefore h̃1i is the true labelling function for Di

S . This ensemble model would achieve a tight bound when
comparing with other methods. However, when comparing to the proposed LIMix model, the Ensemble model has to know
the task labels during both the training and testing stages. Furthermore, the Ensemble model also requires defining the number
of experts to be used before the training, which has limitations on real-time applications.

Regularisation based approaches with episodic memory. Gradient Episodic Memory (GEM) [9] is a typical regularization
approach that introduces a memoryM storing the same number of data samples for each task. These data samples are usually
collected from the training set from each task and we can define the empirical distribution by using these samples for the
source domain of the i-th task, denoted as mi. Then we can derive the risk bound for this model at the t-th task learning :

t∑
i=1

R (h, Si) ≤
t∑
i=1

(
R′(h, h̃1i ,mi)+Ψ(Si,X ,mi,X) + σ(Si,mi)

)
, (34)



where h̃1i is the true labelling function for mi. From Eq. (34), the lifelong learning is transformed into a multiple source-
target domain domain adaptation problem. We also find that the selection of past data samples for each task is crucial for
the improvement of the performance since the appropriate mi can allow the discrepancy term to be small. Additionally,
existing methods using episodic memory [4, 5] can be also explained by using Eq. (34) through which the algorithm finds
the optimal updated direction in the parameter space by taking into account all mi, i = 1, . . . , t. The other method [11],
considers identifying the influential examples that are used to form the influential examples mi corresponding to each task.
These influential examples can reduce the computational complexity while improving the generalization performance on the
target domains.

Dirichlet process mixture model (DP-Mix) [8] and comparison with LIMix. DP-Mix is designed for the task-free
learning manner and is only applied for learning many tasks within one domain. Additionally, DP-Mix only has the expansion
mechanism and therefore would lead to catastrophic forgetting in the cross-domain lifelong learning in which one component
models more than one task. However, the proposed LIMix can be applied in both cross-domain and single-domain (also called
the class incremental learning or continuous learning [22]) lifelong learning (Please see results in Table 2 and Table 3 of the
paper). Besides, DP-Mix method does not provide theoretical guarantees. According to our theoretical analysis, DP-Mix
can guarantee the optimal performance if and only if the number of components matches the number of tasks, as in Eq. (33),
which would require more parameters than LIMix. Furthermore, DP-Mix still requires to use Short-Term Memory (STM) to
evaluate the selection and expansion of the mixture model. However, the proposed LIMix does not store any past samples
and we evaluate the selection and expansion by comparing the knowledge generated by each component and the data samples
from a newly given task.

This paper is the first to provide theoretical insights into various approaches of lifelong learning models. We believe that
the proposed LIMix can be used in a task-free learning manner with few modifications, which will be studied in our future
work.

H. Theoretical analysis when changing the order for learning the tasks during the lifelong learning
The performance in existing lifelong learning models will be affected when changing the order of the tasks used for

training during the lifelong learning. However, there is no theoretical study for the order of tasks and this paper is the first
study to propose a theoretical insight into this problem. From Theorem 2, we know that a single model with GRMs tends
to forget the tasks learnt earlier during the lifelong learning process. The model will consequently retrain with those tasks
several times. However, the ability of the model to learn different tasks vary according to the complexity of the given tasks
and according to what tasks have been learnt previously. For instance, the model learns a hard task at the beginning and
tends to lose its performance during the lifelong learning when comparing to learning an easy task at the beginning. In the
following, we provide the theoretical framework for the learning order of the tasks and their associated learning complexity
during the lifelong learning.

H.1. Preliminaries

Definition 1 (The complexity of a given task). Let M(θ, ς, ϕ) represent a single model, enabled with Generative Replay
Mechanisms (GRMs). We define the complexity of a task by evaluatingM(θ, ς, ϕ) on this task, corresponding to learning the
probabilistic representation of a dataset. We consider the error of a model when learning a task as the learning complexity
measure for that task. When considering two different datasets, H and E, if the empirical risk R(h,H) > R(h,E) then
the complexity for learning the task associated with database H is larger than for E, where R(·) is the empirical risk from
Definition 4, equation (15) in the paper. The assumption is that the same model is used under identical training conditions,
learning rate and model initialization for training with either database H or E.

Assumption 1 We assume τ : Y × Y → [0, 1] be an symmetric and bounded loss function ∀(y, y′) ∈ Y2, τ(y, y′) ≤M and
τ(·, ·) obeys the triangle inequality, where M is a positive number.

Assumption 2 LetA = {D1
T , . . . , D

t
T } be a set of testing databases and Ã = {D1

S , . . . , D
t
S} be a set of training databases,

and we assume that the complexity of each dataset can be indicated by the error provided at the convergence by the model
trained on Ã. The large error means that the dataset is more complex and a smaller error is characteristic of a model
with lower complexity. However, the complexity is measured relative to the deep learning structure and its parameters.
We use Q ∈ Rt×t to represent a matrix where each item qi,k denotes the accumulated error estimated for the i-th task
(database) between the (k)-th learning time and (k + 1)-th learning time. For instance, qi,k can be represented by qi,k =

Ψ(Ã(i)
(k)
X , Ã(i)

(k+1)
X ) +σ(Ã(i)(k), Ã(i)(k+1)). We can observe that we only access a task once during lifelong learning, so



we actually access the pseudo distributions, represented by Ã(i)(k)), k = 2, . . . , t − i + 1, where the superscript k denotes
that Ã(i)(1) is refined for (k) times, resulting in Ã(i)(k) through the subsequent GRMs process. We use Ã(i)(0) and Ã(i)(1)

to represent Di
T and Di

S for simplicity. We use Ã(i)
(k)
X to represent the marginal distribution along X . We assume that

qi,k 6= qj,k,∀k∈{1,...,t−1},i6=j . This assumption is reasonable in practice since the accumulated error by a model for different
datasets is different due to the difference in the complexities of the databases used for training.

H.2. Theoretical analysis and empirical results

Lemma 5 Let S̃(t−i+1)
i be the joint distribution over X × Y . Let us consider the Assumption 1 from above, and we also

assume that we have two different databases, the more complex dataset H and the simpler dataset E, where ‘complex’ and
‘simple’ represent the complexity of the data (images) contained in the database. We use H̃(t−i+1)

i and Ẽ(t−i+1)
i to represent

that H and E are assigned to the i-th task which is used for training the model (t − i + 1) times. We assume that we have
a single modelM(θ, ς, ϕ), enabled with GRMs, which is trained using H and E databases, respectively. The accumulated
error terms for H and E would be different and we assume that the error obtained for learning each task is performed under
identical training conditions and model initialization. We use the notation ∆H = Ψ(H̃

(k)
i,X , H̃

(k+1)
i,X ) + σ(H̃

(k)
i , H̃

(k+1)
i ) and

∆E = Ψ(Ẽ
(k)
i,X , Ẽ

(k+1)
i,X )+σ(Ẽ

(k)
i , Ẽ

(k+1)
i ). The modelM(θ, ς, ϕ) tends to have a lower performance onH when compared

to that on E, while learning one of these databases as a new task. Consequently, the model tends to have a larger risk on H
than E, corresponding to the complexity degree of the data contained in the respective database.

Proof We can have the risk bound for both H and E after the t-th task learning, derived from Theorem 2, as:

R(h,H) ≤ R′(h, h̃
(t−i+1)
i , H̃

(t−i+1)
i ) +

t−i+1∑
k=0

∆H = R
H̃

(t−i+1)
i

(35)

R(h,E) ≤ R′(h, h̃
(t−i+1)
i , Ẽ

(t−i+1)
i ) +

t−i+1∑
k=0

∆E = R
Ẽ

(t−i+1)
i

(36)

R
H̃

(t−i+1)
i

> R
Ẽ

(t−i+1)
i

since each ∆H is larger than ∆E .

In the following, we investigate the theoretical results for Lemma 5 through experiments. We train a single model, enabled
with GRMs, under the MNIST, SVHN and SVHN (MSS sequence) lifelong learning and evaluate the target risk on the
MNIST. We also train a single model with GRMs under the CIFAR10, SVHN and SVHN (CSS sequence) lifelong learning
and evaluate the target risk on CIFAR10 database. We consider that MNIST, showing grey-level images of handwritten
digits, is an easy dataset, corresponding to E from the Lemma 5 above, while CIFAR10 which contains complex images
is considered as a dataset, corresponding to H from the Lemma 5 above. We present the results in Figure 3 where we can
observe that the target risk on the CIFAR10 is an upper bound on the MNIST when learning every new task.

Theorem 3 The performance of a single model with GRMs would be influenced when changing of order in which the tasks
are learnt during the lifelong learning.

Proof Let us consider the Assumptions 1 and 2 from above, in Appendix H.1. We have the accumulated errors for a model
across all tasks, by considering Theorem 1 and Lemma 1, we obtain a relationship similar to Eq. (21), corresponding to
Lemma 1 from the paper :

t∑
i=1

R(h,A(i)) ≤
t∑
i=1

(
R′(h, h̃

(t−i+1)
i , Ã(i)(t−i+1)) +

t−i∑
k=0

(
Ψ(Ã(i)

(k)
X , Ã(i)

(k+1)
X ) + σ(Ã(i)(k), Ã(i)(k+1))

))
(37)

We can further simplify the relationship Eq. (37), by using qi,k ∈ Q, as notation for the last expression from the right side,
resulting in :

t∑
i=1

R(h,A(i)) ≤
t∑
i=1

(
R′(h, h̃

(t−i+1)
i , Ã(i)(t−i+1)) +

t−i∑
k=0

qi,k

)
(38)

Theorem 3 provides an explicit way to analyse the risk bound when changing the learning order of tasks during the
lifelong learning. Firstly, we consider an extreme case that the complexity of each training dataset in Ã is introduced in the



Task1 Task2 Task3

Figure 3. The accumulated target risk on MNIST and CIFAR10, estimated by a single VAE component model with GRMs, with a classifier
used for evaluating the risk, under MSS and CSS lifelong learning, respectively.

increasing order of their complexity qi,1 > qj,1, i > j during the lifelong learning. This means that the model starts with
being trained using an easy task and then gradually starts learning more complex tasks. We also consider the inverse case
when we consider the training datasets in Ã according to their decreasing complexity order qi,1 < qj,1, i > j, during the
lifelong learning, meaning that the model starts learning a complex task and then gradually learns simpler tasks. Nevertheless,
qj,1 > qi,1 can not guarantee that qj,k > qi,k, k > 1, because the complexity for a database is relative to the parameters
learnt by the network, and this can change after learning the same database several times. From the relationship (38), we
can see that if we change the order of tasks, some of the tasks would be reused for training more times than others. From
Assumption 2, we have known that the complexity for each dataset is different. When we change the order of tasks, we
actually change the order within Q, resulting in learning variations within the risk bound for a single model with GRMs. In
order to investigate Theorem 3, we train a single model with GRMs under the lifelong learning of MSC and CMS database
sequences, respectively. We evaluate the accumulated target risk

∑t
i=1 R(h,A(i)) across all tasks. The results are shown in

Figure 4, where we observe that the performance of the model is influenced by changing the learning order of tasks during
the lifelong learning.



Task1 Task2 Task3

Figure 4. The accumulated target risk evaluated on all datasets, estimated by a single model with GRMs under the MNIST, SVHN and
CIFAR10 lifelong learning and when learning the probabilistic representations of the same databases, but in reversed order. Easy-to-Hard
and Hard-to-Easy denote that the model is trained under MSC and CMS lifelong learning, respectively.

In the following we show how can we make the LIMix model robust to changes in the learning order of tasks.

Lemma 6 If we have a mixture model with fewer components than the number of tasks being learnt, then the result depends
on the order for learning the tasks during the lifelong learning.

Proof Based on Assumptions 1 and 2, we can replace each approximation distribution such as S̃(t−b̂i+1)
b′i

in Eq. (21) by using

A and Ã, resulting in :

t∑
i=1

R (h,A(i)) ≤
card(B)∑
i=1

(
R′(h, h̃1bi , Ã(bi)

1
bi) + Ψ(Ã(bi)bi,X , Ã(bi)

1
bi,X) +σ(Sbi , S̃

1
bi)
)

+

card(B′)∑
i=1

R′(h, h̃
(t−b̂i+1)
b′i

, Ã(b′i)
(t−b̂i+1)
b′i

) +

b̂i−1∑
k=0

(
Ψ(Ã(b′i)

k
b′i,X

, Ã(b′i)
(k+1)
b′i,X

) + σ(Ã(b′i)
k
b′i
, Ã(b′i)

(k+1)
b′i

)
)

= Rmixture

(39)
We can further simplify expression (39) by using the simplifying notations Q :

t∑
i=1

R (h,A(i)) ≤
card(B)∑
i=1

(
R′(h, h̃1bi , Ã(bi)

1
bi) + qbi)

)
+

card(B′)∑
i=1

R′(h, h̃
(t−b̂i+1)
b′i

, Ã(b′i)
(t−b̂i+1)
b′i

) +

b̂i−1∑
k=0

(
qb′i,k

) = Rmixture

(40)
It notes that if the number of components is less than the number of tasks, card(B′) 6= ∅. If we change the order of tasks,

which corresponding to the change of orders in Q, then Rmixture would be changed, caused by the change of
b̂i−1∑
k=0

(
qb′i,k

)
when we change b′i (see details in Assumption 2). This conclusion leads to the fact that for a mixture model, if the number of
components is less than the number of tasks, a certain component must learn more than one task in which GRMs is used for
retraining the prior samples in order to overcome forgetting. If we change the order of tasks, this component would firstly
learn the later task of the original order, which would lead to a different accumulated error during the GRMs process when
comparing with the original order of learning the tasks.

In the expression (Eq. (40)) we find that if the number of components in the mixture model is equal to the number of tasks,
B′ = ∅, then the performance in the mixture does not change when changing the order of tasks since the last term of the
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(a) BatchEnsemble.

Task1 Task2 Task3

(b) Components in LIMix share part of sets of pa-
rameters.

Task1 Task2 Task3

(c) Each component has independent parameters
from each other, in LIMix.

Figure 5. The accumulated target on all datasets, estimated by LIMix under the MNIST, SVHN and CIFAR10 lifelong learning and their
learning in inverse order during the lifelong learning. Easy-to-Hard and Hard-to-Easy denote that the model is trained under MSC and
CMS lifelong learning, respectively.

right-hand side in Eq. (39) is empty. As card(B′) increases, the performance in the mixture model tends to be influenced by

changing the order for learning the given tasks because the term
b̂i−1∑
k=0

(
qb′i,k

)
can be different when we change the order of Q.

During the experiments we find that the performance of LIMix and Batch Ensemble is affected by the change of orders
of tasks. We show the empirical results in Figures 5-a and b. This is because the components in LIMix and BatchEnsemble
share most of the parameters with each other. Once the learning of the first task was finished, the parameters of the shared
models will be fixed during the learning of the following task. From the results provided in Figure 5-c, we can observe that
when CIFAR10 database is used as the first learning task, LIMix would achieve a smaller target risk across all tasks than the
case when the probabilistic representation of the MNIST database is used as the first learnt task. In order to allow LIMix to
be robust to the change of orders of tasks in the following we do not share the parameters between components in LIMix
and each component has an independent parameter set. We train this mixture model using the same setting and present the
accumulated target risk in Figure 5-b, where we can observe that the performance of LIMix does not change when changing
the order of tasks. This result also proves Lemma 6.
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Figure 6. Diagram showing the learning structure for the proposed LIMix mixture model. Only red components update parameters during
lifelong learning.

I. Learning a compressed Student model and implementation
I.1. The derivation of the loss function for the Student

In order to reduce the complexity of the proposed LIMix mixture model, we propose to share most parameters of the
generator and the inference models, where parameters θi = {θS , θ̃i} and ωi = {ωS , ω̃i} of each component consists of
the shared part {θS , ωS} and the individual part {θ̃i, ω̃i}. The network corresponding to each component is built on the
top of the shared component. Once the learning of the first task is finished, the parameters of the shared module will be



fixed, and we only update the parameters of a certain selected component during the following learning. We also learn a
compressed Student model which shares the same network architecture with the component. The structure of the LIMix
model is presented in Figure 6. In order to transfer the knowledge from the Teacher (represented by the mixture model) to
the Student module, we introduce a new knowledge distillation loss, defined as :

DKL (Pθ1 ,Pθ2 , . . . ,PθK || Pθstu) (41)

where each Pθi is the distribution approximated by the i-th component in the Teacher module. Pθstu is the distribution
approximated by the Student module. However, solving Eq. (41) is intractable through optimization and we rewrite it as :

DKL (Pθ1 ,Pθ2 , . . . ,PθK || Pθstu) ≈
K∑
i=1

DKL (Pθi || Pθstu) (42)

where each DKL(Pθi || Pθstu) can be expressed as :

DKL (Pθi || Pθstu) = EPθi [log pθi (x)− log pθstu (x)] (43)

where pθi(x) and pθstu(x) are the density functions for Pθi and Pθstu , respectively. We can omit the first term since we
only update the student’s parameters θstu during the knowledge distillation. Then the optimization problem is redefined by
maximizing :

EPθi log pθstu (x) (44)

The knowledge distillation loss is defined as :

K∑
i=1

EPθi log pθstu (x) (45)

where log pθstu (x) can be optimized by maximizing the Evidence Lower Bound (ELBO). Eventually, the loss function for
the Student module contains two terms :

Lstu = Ex∼St,X log pθstu (x) +

K∑
i=1

EPθi log pθstu (x) , (46)

where we decompose each log-likelihood function as ELBO, resulting in :

EqωStu (z|x) [log pθStu(x | z)]−DKL [qωStu(z | x) || p(z)]︸ ︷︷ ︸
ELBO on the t-th task

+

K∑
i=1

Ex′∼Pθi

(
EqωStu (z|x) [log pθStu(x | z)]−DKL [qωStu(z | x) || p(z)]

)
︸ ︷︷ ︸

Knowledge distillation optimization

(47)

It notes that we only train a Student model under the unsupervised learning setting. In the future work, we would like
to extend the LIMix to train a Student module under the supervised learning setting. We also provide the pseudocode
in Algorithm 1 and the learning process of the Teacher from LIMix under unsupervised learning in Figure 7, where the
Student learning is omitted for the sake of simplification. After the learning of the (t − 1)-th task is finished, we calculate
{Ki,1, . . . ,KnG,K} by Eq. (7) from the paper, where K is the number of components. Then p(cti = j | ct−i, a) evaluates
the probability of the i-th data belonging to the j-th component using Eq. (4) from the paper for j ≤ K or Eq. (7) when
generating a new component, j = K + 1. We use a group of samples from the t-th task to calculate the average probability
p(ct = j) = 1

nG

∑nG
s=1 p(c

t
s = j | ct−s, a), j = 1, . . . ,K + 1. If ct = K + 1, then we add a new component to the mixture,

otherwise, we choose a component according to ct for the t-th task learning.

I.2. Knowledge assimilation by the Student

In this section, we theoretically explain the weakness in the learning by the Student by using the proposed theoretical
framework. Although knowledge distillation (KD) has been used as a training procedure in lifelong learning [21], there is
no theoretical analysis of the forgetting behaviour in the model when using KD for knowledge transfer. This paper is the



Algorithm 1: LIMix lifelong unsupervised learning
Input: All training databases
Output: The model’s parameters

1 for i < taskCount do
2 for index < batchCount do
3 Teacher learning: ;
4 if isAdd == True then
5 Generate samples x from the selected component ;
6 Train the selected component with x and samples drawn from the i-th task by maximizing the log-likelihood function

F (· | ci, θci , ωci) ;
7 end
8 else
9 Train the selected component with samples drawn from the i-th task by maximizing the log-likelihood function

F (· | ci, θci , ωci) ;
10 end
11 Knowledge distillation ;
12 Transfer knowledge from the teacher and the current task to the student by Lstu ;
13 Gating mechanism based Dirichelt process for the selection and expansion: ;
14 p(c(i+1) = j) = 1

nG

∑nG
s=1 p(c

(i+1)
s = j | c(i+1)

−s , a) ;

15 c(i+1) = j∗ where 1
nG

∑nG
s=1 p(c

(i+1)
s = j∗ | c(i+1)

−s , a) > 1
nG

∑nG
s=1 p(c

(i+1)
s = k | c(i+1)

−s , a), k 6= j∗ ;
16 end
17 end

first research study to provide insights into how a Student loses knowledge (information) from a strong Teacher module.
Firstly, from Eq. (46), we observe that the Student learns the prior knowledge from each expert from the Teacher module in
LIMix and its performance on the target set of prior tasks depends inevitably on the quality of the approximation distribution
modelled by each expert in LIMix. In the following we provide the risk bound for the Student module.

Lemma 7 For a given optimal LIMix, where the number of experts matches the number of tasks and a classifier, the Student
module, hs ∈ H is trained along with LIMix during the lifelong learning. The risk bound for the Student at the t-th task
learning is defined as :

t∑
i=1

R (hs, Si) ≤
t−1∑
i=1

(
R′(hs, h̃

2
i , S̃

2
i )+Ψ(Si,X , S̃

2
i,X) + σ(Si, S̃

2
i )
)

+ R′(hs, h̃
1
t , S̃

1
t )+Ψ(St,X , S̃

1
t,X) + σ(St, S̃

1
t )

(48)

Although LIMix can lead to a tight bound for the risk, according to Lemma 2, the gap on the risk bound, given by
Eq. (48) for the Student is still large. This is because the Student learns the knowledge of prior tasks {T1, . . . , Tt−1} from
the degenerated distribution {S̃2

1,X , . . . , S̃
2
(t−1),X}. Additionally, since the Student has only a single network as a classifier

which is trained on the multiple domains. This can also lead to a degenerated performance on the target risk due to the
negative transfer. One solution to improve the generalization of the Student in the optimal LIMix is to use regularization
approaches [9], which would regularize the network optimization to relieve the negative transfer.

In the following, we analyze the performance of the Student when the Teacher module of the LIMix dynamically changes
its network architectures.

Lemma 8 Let hs ∈ H be a Student which is trained along with LIMix that dynamically changes its network architectures
during the lifelong learning. The risk bound for hs at the t-th task learning is defined as :

t∑
i=1

R (hs, Si) ≤
card(B)∑
i=1

(
R′(hs, h̃

2
bi , S̃

2
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2
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2
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+
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(49)
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Figure 7. The learning process of the Teacher of LIMix under the unsupervised learning.

It notes that B in Eq. (49) does not contain the t-th task. According to Lemma 3, see Appendix E, we have Rmixture
s ≥

Rmixture. Lemma 8 is easily proved since the Student’s classifier hs is trained on the degenerated distributions S̃2
bi

even if
the bi-th task is only trained once by a certain expert in LIMix.

Eventually, we implement the Student only for unsupervised learning and we find that the Student performs worse than
the Teacher in LIMix. This can also be explained by Eq, (48) and Eq, (49), although these derivations are used only for the
classification tasks.

I.3. The implementation of LIMix in classification tasks

During the prediction tasks, the inference models in each component are built on top of the shared inference model. In
order to overcome forgetting the learnt knowledge, we do not update the shared parameters after the first task is finished.
Instead, we create a new component in the mixture model by initializing its parameters with those corresponding to the
existing mixture’ component, which has the highest sample log-likelihood for the incoming task. Then we train the newly
added component considering just a few iterations in order to learn the new task. The optimization of the inference model
and the generator during the training of the LIMix model with a certain task, is illustrated in the diagrams from Figures 8.

J. Learning prediction tasks and image-to-image translation
In the following we consider two applications: image classification and image-to-image translation (IToI). Conditional

VAEs (CVAEs) is one of the most popular generative models [16] used in predictive tasks, defined by :

log pθi (y | x) ≥ Eqωi (z|x,y) [log pθi(y | x, z)]−DKL (qωi (z | x, y) || pθi (z | x)) . (50)
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Figure 8. Diagrams showing the supervised learning structure when optimizing a single component for the proposed LIMix mixture model.

However, CVAE requires an additional prior network pθi(z | x) and the recognition network qωi(z | x, y) is conditioned
on two variables x, y, which uses more parameters and increases the computing time during both training and testing. The
conditional distribution pθi(y | x, z), where y is conditioned on x, z, so we can compress the network qωi(z | x, y) into
qωi(z | y) given that z contains information about y is enough for modelling pθi(y|x, z). We also consider to replace the
prior network pθi(z | x) by using a simple normal distribution N (0, I) which does not depend on x, benefiting on reducing
the whole model complexity. Then, we rewrite Eq. (50) to be used as the loss function for Image-to-Image translation,
LIToI(x, y, θct , ωct) :

LIToI(x, y, θct , ωct) = Eqω
ct

(z|y)
[
log pθct (y | x, z)

]
−DKL(qωct (z|y) || pθct (z)). (51)

This objective function can also benefit on the efficient inference process at the testing phase y ∼ pθct (y | x, z) and
z ∼ pθct (z). In the Image-to-Image translation (IToI) task where y belongs to the image domain, we use a large threshold
in order to allow growing a component to adapt the incoming task for each task switch since we can not generate previously
learned knowledge from pθct (y | x, z), ∀i = 1, . . . , t− 1 when learning the t-th task.

In the classification task, y belongs to the discrete domain (one-hot vector) and pςct (y | x, z) is implemented as a classifier,
we replace pςct (z | x) by p(z) = N (0, I) in Eq. (50), used as the objective function for training the classifier:

LP(x, y, ςct , ωct) = Eqω
ct

(z|x,y)
[
log pςct (y | x, z)

]
−DKL(qωct (z | x, y) || p(z)). (52)

However, Eq. (52) is only used to train the classifier. In order to learn the density functions, for each component we
incorporate the class label, which can be rewritten as pθct (x | y). Its ELBO can be defined as :

LG(x, y, θct , ωct) = Eqω
ct

(z|x,y)
[
log pθct (x|y, z)

]
−DKL(qωct (z | x, y) || p(z)). (53)

In practice, we do not optimize LG and LP by using the same optimizer, but separately, considering the same mini-batch
of data samples.

The derivation of VAE objective function. Please see the main derivation of the lower bound to the conditional log-likelihood
in Appendix-S1 from the Supplementary Material in [16].

K. Experiment settings for the ablation study and theoretical results
K.1. Hyperparameter setting and network architecture

All models are implemented by using TensorFlow [1]. We use Adam optimization algorithm [6], considering a learning
rate of 0.0002 and β = 0.5. We consider images of input size of 32×32 and use kernel size of 33̃, the shared encoder ωS is a
CNN which has four layers of units {128, 256, 512, 1024}while ω̃i is a fully connected network with two layers {1024, 100}.
For the decoder, the shared part θS is a CNN which has three layers consisting of a fully connected layer with 256 * 8 * 8
units and other two convolution layers {256, 256}. θ̃i is a CNN consisting of three layers {256, 256, 3}. For the input size of
64×64, we implement the shared encoder ωS as a CNN {64, 128, 256} and ω̃i is a network consisting of a convolution layer
512 and three connected layers {1024, 256}. For the decoder, the shared part θS is a network consisting of a fully connected
layer with 256 * 8 * 8 units and three convolution layers {256, 256, 256}. θ̃i is a CNN with {256, 128, 3} processing units.



K.2. The lifelong learning of complex datasets

Sub-ImageNet. We create the Sub-ImageNet by randomly selecting 60,000 samples from the ImageNet dataset [7] and
assign 50,000 and 10,000 samples to be used as the training and testing sets, respectively.

We train various models for learning a sequence of tasks defined by complex data, such as CCCOS, consisting of CelebA,
CADS, 3D-Chair, Omniglot and Sub-ImageNet databases, and the results are provided in Table 1 where all images are resized
as 64 × 64 × 3. The results of the proposed LIMix outperform the other methods when learning either MSFIR or CCCOS
sequence of tasks, according to the results from Table 1 from page 7 of the paper, and Tab. 1, respectively.

MSE SSMI PSNR

Datasets LGM CURL BE LIMix Stud LGM CURL BE LIMix Stud LGM CURL BE LIMix Stud

CelebA 1536.06 1446.86 209.93 214.55 646.95 0.33 0.34 0.69 0.69 0.49 15.14 15.42 23.61 23.52 18.71
CACD 2348.35 2202.88 459.93 363.17 1394.11 0.26 0.27 0.55 0.62 0.38 13.16 13.40 20.21 21.28 15.38
3D-Chair 1430.87 1258.02 629.55 483.29 1527.70 0.43 0.47 0.73 0.80 0.47 15.68 16.18 19.26 20.72 15.60
Omniglot 3356.40 2464.04 753.30 361.33 4258.15 0.20 0.26 0.78 0.89 0.28 11.76 13.13 18.55 21.99 10.75
Sub-ImageNet 1147.64 1336.58 773.89 783.21 1064.51 0.30 0.32 0.37 0.37 0.32 15.80 16.07 18.47 18.44 17.06

Average 1963.86 1741.68 565.30 441.11 1778.29 0.30 0.33 0.62 0.67 0.39 14.31 14.84 20.02 21.19 15.50

Table 1. The performance of various models under the CCCOS learning setting.

K.3. The estimation of the source risk and discrepancy

Initially, we investigate the theoretical results for Theorem 2 from the paper. Firstly, in order to calculate the discrepancy,
we train a task-inference network that is used to infer the task label for the given data samples. Also we train an auxiliary
classifier which is used to infer the prediction for class labels and is trained on the MNIST training set. For calculating the
discrepancy on MNIST, we use the task-inference network to choose the images (images are sampled from the testing set
or the generator distribution) that belong to MNIST. Then we have the source distribution (generated images are belong to
MNIST) and the target distribution (the testing set of MNIST). Then we calculate the discrepancy between the source and
target distribution using equation (14) from the paper, by using the model and the auxiliary classifier. For the source risk on
MNIST, we generate the images and the associated labels inferred by the model before the current task learning, then we
use the task-inference network to choose the images that belong to MNIST. Finally, we can calculate the source risk on the
selected images with associated class labels by using the model which is training on the current task learning. This estimation
process is used for the results presented in Figures 2c and 2d of the paper.

Additionally, we evaluate the discrepancy distance between different target distributions. We train two classifiers where
the first classifier is only trained on MNIST, and the second classifier is trained on the joint training set of MNIST and a
certain selected dataset (let us call this dataset as A). Then we calculate the discrepancy distance between MNIST and A by
using these two classifiers. We report the results in Figure 9 where ”(MNIST, Fashion)” represents the estimation of the
discrepancy distance between MNIST and Fashion databases. We can observe from Figure 9 that the discrepancy distance
is small when two domains are very similar (for example MNIST and RMNIST). This indicates that the proposed selection
process can help LIMix to choose an appropriate component that has a small discrepancy to the new task since LIMix reuses
the component that was trained on MNIST, to learn a similar dataset, such as RMNIST for example.

K.4. The settings for the continuous learning benchmark

This section refers to the second paragraph from Section 5.3 “Classification tasks” and to the results Table 3 from the
paper. Permuted MNIST defines a series of tasks as parts of the same database. In this paper, we set 10 tasks where each task
has a fixed permutation of pixels to the MNIST dataset. Split MNIST [20] contains five tasks where each task is built based on
the data samples collected from two classes. For Permuted MNIST, we implement the classifier for each component by using
a fully connected network consisting of two layers and each layer has 100 hidden units. For Split MNIST, we implement the
classifier by using a network of two hidden layers and each layer has 256 hidden units. For the hyperparameter setting, we
search the threshold from 80 to 120 for Permuted MNISTT and between 30 and 60 for Split MNIST.

Split CIFAR. In the following, we also evaluate our LIMix on a more challenging continuous learning benchmark, Split
CIFAR [20]. As the same process from [11], we take CIFAR10 as the first task and create the following 5 tasks where each
task collects samples from 10 consecutive classes from CIFAR100. We also adopt the same network architecture consisting
of four convolutional layers and two hidden layers. It notes that we only build a shared classifier which only consists of four
convolutional layers. When a new component is built, we only create a sub-classifier which has only two hidden layers and



Figure 9. The estimation of the discrepancy distance between different domains.

reuses parameters from this shared classifier. The parameters of the shared classifier are only updated at the first task learning
and will be frozen at the following task learning. We search the threshold for LIMix from 80 to 10 in the experiments. We
perform five independent runs for the proposed LIMix. The results are reported in Table 2 where all results are cited from
[11] except the proposed LIMix. ”6 C” represents that LIMix has learnt 6 components. LIMix can achieve the optimal results
when the number of components matches the number of tasks and there have no accumulated errors (See details in Lemma
2 of the paper). Then the performance on the target set of each individual tasks is relying on the generalization ability of the
associated component, as discussed in Lemma 2 of the paper.

Methods Split CIFAR

FROMP 76.2± 0.4%
FROMP-L2 75.6± 0.4%
SI 73.5± 0.5%
EWC 71.6± 0.9%
VCL + random coreset 67.4± 1.4%

LIMix 76.40± 0.3% (6 C)
LIMix 65.70% (5 C)

Table 2. Results of Split CIFAR.

K.5. Learning a long sequence of tasks under multiple domain setting

In this section, we evaluate the performance on a long sequence of tasks: MNIST, SVHN, Fashion, IFashion, RMNIST,
rated Fashion (RFashion) and CIFAR10 (MSFIRRC). We train LIMix with a threshold of 180 for the lifelong learning of
MSFIRRC. After training, LIMix has five components for the Teacher module, where the first component learns MNIST and
RMNIST. The third component learns Fashion and RFashion. We report the results in Table 3, where LIMix achieves a better
average result than BE. Also LIMix obtains better results for six out of seven individual databases, with BE having better
results only for MNIST database, which contains the simplest images from all the databases under consideration in these
experiments.

L. The complexity evaluation for the LIMix model
In the following we provide the total number of parameters required by each method. In the Tables 4, 5, 6 ’Stu’ represents

the number of parameters for the Student module in LIMix, compared with the number of parameters required by other
methods.



Dataset LIMix BE [17]

MNIST 86.01 99.28
SVHN 86.91 74.84
Fashion 90.68 87.60
IFashion 91.02 86.03
RMNIST 99.01 98.77
RFashion 91.43 86.60
CIFAR10 64.61 54.79

Average 87.10 83.99

Table 3. Classification accuracy of various models after the MSFIRRC’s lifelong learning.

Model LGM [13] CURL [14] BE [17] LIMix Stu
Parameters 3.3× 108 2.3× 108 3.6× 108 2.1× 108 1.4× 108

Table 4. The number of parameters of various models under MSFIR unsupervised learning.

Model LGM [13] CURL [14] BE [17] LIMix Stu
Parameters 1.9× 109 2.0× 109 2.0× 109 7.2× 108 1.7× 108

Table 5. The number of parameters of various models under the CelebA, CACD, 3D-Chair, Omniglot and Sub-ImageNet (CCCOS) lifelong
learning setting.

Model LGM CURL BE [17] The proposed MRGANs [18]
Parameters 5.9× 108 3.3× 108 3.9× 108 3.4× 108 3.3× 108

Table 6. The number of parameters of various models under the lifelong supervised learning.

M. Visual results
In this section, we provide visual results for image reconstruction and generation. We train the proposed LIMix model

under the MSFIR lifelong learning. The results obtained by the Teacher module as well as by the Student module are shown
in Figures 10 and 11, respectively. We also train LIMix under CCCOS lifelong learning. The results obtained by the Teacher
module and by the Student module are shown in Figures 12 and 13, respectively. From these results we observe that both the
Teacher and Student modules can yield high-quality reconstructions. In Figure 14 we also provide the interpolation results
achieved by the Student module from LIMix, after the CCCOS lifelong learning.

In the following, we train LIMix for the image to image translation tasks. The model is trained considering the lifelong
learning of Map, CMP [12] and Shoe [19] datasets. We provide the visual results in Figure 15, where we observe that the
proposed LIMix can be successfully applied for image-to-image translation tasks.



(a) MNIST. (b) Fashion. (c) SVHN. (d) IFasion. (e) RMNIST.

(f) Task 1. (g) Task 2. (h) Task 3. (i) Task 4. (j) Task 5.

Figure 10. Image reconstructions when using LIMix under the MSFIR lifelong learning. The first row represents testing data samples and
the second row are their reconstructions using LIMix.

(a) Testing samples. (b) Reconstructions.

Figure 11. Reconstructions when using the Student module component of LIMix after MSFIR lifelong learning.

(a) CelebA. (b) CACD. (c) 3D-chair. (d) Omniglot. (e) CIFAR10.

(f) Task 1. (g) Task 2. (h) Task 3. (i) Task 4. (j) Task 5.

Figure 12. Reconstructions when using LIMix after CCCOS lifelong learning. The first row represents testing images and the second row
are their reconstructions using LIMix.



(a) Testing samples. (b) Reconstructions.

Figure 13. Reconstructions when using the Student module of LIMix after CCCOS lifelong learning.



Figure 14. Interpolation results obtained by the Student module of LIMix, after CCCOS lifelong learning.



(a) Maps.

(b) Reconstructions.

(c) testing samples from CMP [12]

(d) Reconstructions.

(e) Testing samples from [19].

(f) Reconstructions.

Figure 15. Image to Image translation results when learning three different tasks under the lifelong learning.
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