
Supplementary Material:
Procrustean Training for Imbalanced Deep Learning

Han-Jia Ye De-Chuan Zhan
State Key Laboratory for Novel Software Technology, Nanjing University, China

{yehj, zhandc}@lamda.nju.edu.cn
Wei-Lun Chao

The Ohio State University, USA
chao.209@osu.edu

We provide details omitted in the main paper.

• Appendix A: details of the statistics in Figure 1 and
Figure 7 (cf. section 1 and subsection 5.4 of the main
paper).

• Appendix B: additional analysis of MFW (cf. subsec-
tion 3.3 of the main paper).

• Appendix C: additional details of the experimental se-
tups (cf. subsection 5.1 and subsection 5.2 of the main
paper).

• Appendix D: additional experimental results and anal-
ysis (cf. subsection 5.3 and subsection 5.4 of the main
paper).

A. Details of the statistics of MFW
A.1. Classification ratio

We showed in Figure 1 (b) of the main paper the clas-
sification ratio per class, which is the ratio of “the num-
ber of training data that are classified into a class” (e.g.,
class-1 or class-10) to “the number of training data which
truly belong to that class.” For instance, if class-10 has
50 training instances but there are 100 training instances
(from all the classes) classified as class-10, then the ratio
is 100/50 = 200 (%). Concretely, we apply the learned
models (at different epochs) to classify all training data, and
compute the ratio of class c as follows∑N

n=1 1
[
c = argmaxc′ w

⊤
c′fθ(xn)

]
Nc

. (13)

1[x] returns 1 if x is true and 0 otherwise. This ratio offers
a measure of the training progress of each class. If more
training data are classified into a particular class than the
data that class truly has, the ratio would be high, indicating
that the class has been fitted more than other classes.

In Figure 8, we compare the classification ratio of a mi-
nor and a major class using either a conventionally-trained
neural network (using ERM; top) or the one trained with
our MFW (bottom). No matter which method is used, the

Classification ratio of ERM

0 50 100 150 200
Training Epoch

0
25
50
75

100
125
150
175
200

Cl
as

si
fie

d
Ra

ti
o

(%
)

Class-1
Class-10

Classification ratio of MFW

0 50 100 150 200
Training Epoch

0
25
50
75

100
125
150
175
200

Cl
as

si
fie

d
Ra

ti
o

(%
)

Class-1
Class-10

Figure 8. The training progress of a neural network on class-
imbalanced data. We trained a ConvNet classifier using ResNet-
32 [21] on a long-tailed CIFAR-10 data set [36], following [9]. We
only showed two classes for clarity. Class c = 1 and c = 10 have
5000 and 50 training instances, respectively. The classification
ratio, i.e., the numbers of training data that are classified into a
class divided by the number of training data that class truly has, is
plotted along the epochs for both ERM (top) and MFW (bottom).

two classes attain nearly 100% ratio at the end of the train-
ing, which matches the fact that a neural network could ul-
timately fit the training data perfectly [75].

However, if we compare the ratios along the training pro-
cess, we see that using ERM, the major class has a much

higher ratio (over 100%) in the beginning while the minor
class has a much smaller ratio (around 0% in the beginning).
This means that most of the training data are classified into
major classes at the early epochs. In contrast, with MFW,
the ratios become much balanced across classes, indicating
a more balanced training progress.

A.2. Feature deviation

We showed the formula of computing the feature devia-
tion per class between its training and test data in subsec-
tion 5.4 of the main paper. We followed [72] to perform
multiple rounds of sub-sampling to compute the training
mean. This is to reduce the influence of the estimation vari-
ance resulting from class sizes — even for the same ma-
jor class, computing its mean using fewer data has a larger
variance and therefore a larger deviation. To remove such a
factor and to more faithfully reflect feature deviation across
classes, we sub-sample the same number of training data
per class to compute its training mean. Similar to [72], we
observed a trend of increasing deviation from major to mi-
nor classes (in Figure 7 of the main paper), yet MFW leads
to a much smaller deviation than ERM.

B. Analysis of MFW
B.1. hθ is linear

Following subsection 3.3 of the main paper, if hθ is lin-
ear, we have fθ = V ⊤gθ. When MFW is not performed
(i.e., λ1 = λ2 = 0), we have,

∇gθ(x1)ℓ = (σ(w⊤fθ(x1))− y1)× V w,

∇gθ(x2)ℓ = (σ(w⊤fθ(x2))− y2)× V w. (14)

When MFW is performed and we apply a weight function
that gives class c = 1 a weight 0.5 and class c = 0 a
weight 0 (so major classes have larger weights), we have
λ1 ∈ [0, 0.5] while λ2 = 0. This leads to

∇z̃1
ℓ = (σ(w⊤V ⊤z̃1)− y1)× V w,

∇z̃2
ℓ = (σ(w⊤V ⊤z̃2)− y2)× V w, (15)

which, by passing the gradients back to gθ(x1) and gθ(x2)
(note that, we set λ2 = 0 already), then gives us

∇gθ(x1)ℓ =(1− λ1)× (σ(w⊤V ⊤z̃1)− y1)× V w,

∇gθ(x2)ℓ =(σ(w⊤fθ(x2))− y2)× V w

+ λ1 × (σ(w⊤V ⊤z̃1)− y1)× V w. (16)

The second part of∇gθ(x2)ℓ comes from gθ(x2) being used
to weaken gθ(x1). Now suppose x2 is not classified cor-
rectly by the current model, i.e. σ(w⊤fθ(x2)) > 0.5, we
have

|(σ(w⊤fθ(x2))− y2)| ≥
|(σ(w⊤fθ(x2))− y2) + λ1 × (σ(w⊤V ⊤z̃1)− y1)| ≥ 0,

which means the norm of ∇gθ(x2)ℓ will be reduced with
MFW7, compared to Equation 14.

B.2. hθ is nonlinear

Let us define z1 = gθ(x1) and z2 = gθ(x2). When hθ

is nonlinear (e.g., by a neural network block), Equation 16
becomes

∇gθ(x1)ℓ =(1− λ1)× (σ(w⊤hθ(z̃1))− y1)× (∇z̃1
J)⊤w,

∇gθ(x2)ℓ =(σ(w⊤fθ(x2))− y2)× (∇z2
J)⊤w

+ λ1 × (σ(w⊤hθ(z̃1))− y1)× (∇z̃1
J)⊤w,

(17)

where ∇z̃1
J is the Jacobian matrix of hθ(z̃1) w.r.t. z̃1 and

∇z2J is the Jacobian matrix of hθ(z2) w.r.t. z2. Suppose
that (∇z2J)

⊤w and (∇z̃1J)
⊤w are pointing to similar di-

rections (e.g. with a high cosine similarity), then the con-
clusion above on gradient reduction still holds.

B.3. Linear decision boundary w

Still following subsection 3.3 of the main paper and the
notations defined above, when there is no MFW, the gradi-
ent to w with the two data instances is

∇wℓ =(σ(w⊤fθ(x1))− y1)× fθ(x1)

+ (σ(w⊤fθ(x2))− y2)× fθ(x2). (18)

When MFW is performed (with the same setting as
above: λ1 ∈ [0, 0.5] and λ2 = 0), the gradient to w be-
comes

∇wℓ =(σ(w⊤hθ(z̃1))− y1)× hθ(z̃1)

+ (σ(w⊤fθ(x2))− y2)× fθ(x2), (19)

in which the first term’s gradient direction changes from
fθ(x1) = hθ(z1) to hθ(z̃1). In the case where hθ is an
identity function, this means that

∇wℓ =(σ(w⊤z̃1)− y1)× ((1− λ)gθ(x1) + λgθ(x2))

+ (σ(w⊤gθ(x2))− y2)× gθ(x2). (20)

In other words, MFW also weakens the tendency of the lin-
ear classifier w to fit the major class data8. This is another
reason why the overall training progress with MFW can be
more balanced across classes.

7One can show this by plugging in y1 = 1 and y2 = 0, and con-
sider (σ(w⊤fθ(x2)) − 0) > 0.5 and λ1 × (σ(w⊤V ⊤z̃1) − y1) ∈
[−0.5, 0.0].

8The first term now moves w toward (1− λ)gθ(x1) + λgθ(x2), not
gθ(x1).

C. Experimental Setups
C.1. Datasets

To study the imbalanced classification problems on bal-
anced datasets (e.g., CIFAR-10 [36], CIFAR-100 [36],
Tiny-ImageNet [38]), we follow [5, 9] to create imbalanced
versions by reducing the number of training instances, such
that the numbers of instances per class follow a certain dis-
tribution. Specifically, the long-tailed imbalance follows an
exponential distribution. We control the degree of dataset
imbalance by the imbalance ratio ρ = Nmax

Nmin
, where Nmax

(resp. Nmin) is the number of training instances of the
largest major (resp. smallest minor) class.

Tiered-ImageNet [50] is a subset of ImageNet [11]
widely used in few-shot learning [67]. The images are 84×
84. There are three splits with disjoint classes in Tiered-
ImageNet: 351 classes for many-shot model training, 97
classes for few-shot model validation, and 160 classes for
few-shot model testing. We use Tiered-ImageNet to synthe-
size a large-scale step imbalanced dataset. We treat the 351
many-shot classes as the major classes, each with around
1, 000 training images. We treat classes in the other two
splits as minor classes: we randomly select 5 training in-
stances per class. All the classes have 3 validation instances
and 50 test instances. We tune hyper-parameters on the
351 + 97 classes using their validation instances: the 351
classes are many-shot (i.e., major) and the 97 are few-shot
classes (i.e., minor). We then re-train the model with se-
lected hyper-parameters and test it on the 351+160 classes
using their test instances: the 351 classes are many-shot
(i.e., major) and the 160 are few-shot classes (i.e., minor).

In this supplementary material, we further experiment on
ImageNet-LT [45], which is also a subset of ImageNet [11].
ImageNet-LT is a long-tailed imbalance dataset with ratio
ρ = 256. It contains 1,000 classes with 115.8K training
images in total, 20 images per class for validation, and 50
images per class in the test set.

Except for the Tiered-ImageNet dataset described above,
we follow [9, 5, 80] to report the accuracy on the test set for
CIFAR-10 / CIFAR-100 / ImageNet-LT and the accuracy on
the validation set for Tiny-ImageNet and iNaturalist.

C.2. Implementation details of MFW

For all the experiments, we use mini-batch stochastic
gradient descent (SGD) with momentum = 0.9 as the opti-
mization solver. The softmax cross-entropy loss is used for
MFW. We apply MFW after the embedding of the second
group of convolutional layers.

We tune the beta distribution parameter α based on
the performance on the held-out set (except for Tiered-
ImageNet, which has a separate validation set from the test
set). Concretely, we split a held-out set from the training
set, following [72]. We held out 3 images per class, creat-

ing a small balanced held-out set. If a class has fewer than
3 images, we ignore them in hyper-parameter tuning.

We keep the scale value in Equation 9 of the main paper
as β = 2 and β = 0.01 for the long-tailed and step cases,
respectively. Deferred Re-Weight (DRW) [5] is also applied
to MFW near the end of the training process, to further im-
prove the accuracy. In detail, we apply the vanilla softmax
(with MFW) at first, and after completing 80% of the train-
ing progress, we apply a weighted version of softmax for
optimization. The class-wise weights are set based on [9].

C.3. Training details for imbalanced CIFAR

We use ResNet-32 [21] for all the CIFAR [36] exper-
iments, following [5, 9]. The batch size is 128, and the
weight decay is 2×10−4. The initial learning rate is linearly
warmed up to 0.1 in the first five epochs, and decays with
cosine annealing. The model is trained for 300 epochs9.
We follow [5] to do data augmentation. The 32×32 CIFAR
images are padded to 40 × 40 and randomly flipped hori-
zontally, and then are randomly cropped back to 32× 32.

C.4. Training details for Tiny-ImageNet

We use ResNet-18 [21], following [5]. It is trained for
200 epochs with a batch size of 128. The initial learning rate
is 0.1 and decays with cosine annealing. Images are padded
8 pixels on each size and randomly flipped horizontally, and
then are randomly cropped back to 64× 64.

C.5. Training details for Tiered-ImageNet

We use ResNet-12 [39, 73]. It is trained for 180 epochs
with a batch size of 512, following [30]. The initial learn-
ing rate is 0.2 and decays with cosine annealing. Images are
padded 8 pixels on each size and randomly flipped horizon-
tally, and then are randomly cropped back to 84× 84.

C.6. Training details for ImageNet-LT

We use ResNet-10 [21] and ResNext-50 [71]. They are
trained for 200 epochs with a batch size of 256. The initial
learning rate is 0.1 and decays with cosine annealing. In
training, the images are resized to 256 × 256 and flipped
horizontally, and are randomly cropped back to 224× 224.

C.7. Training details for iNaturalist

We follow [9, 80] to use ResNet-50 [21] on iNaturalist.
We train the model for 90 and 180 epochs with a batch size
of 128. The learning rate is 0.05 at first. It decays at the
60th (resp. 120th) and the 80th (resp. 160th) by 0.1 when
training for 90 epochs (resp. 180 epochs). We follow [80]
to apply the standard pre-processing and data augmentation

9On CIFAR, we found that for ERM and other baselines, training with
200 epochs converges. As MFW weakens major features, some cases need
more epochs to converge and we train them for 300.

Long-tailed (ERM)

0 50 100 150 200
Training Epoch

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Fe
at

ur
e

D
ev

ia
ti

on Class-1
Class-10

Long-tailed (MFW)

0 50 100 150 200
Training Epoch

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Fe
at

ur
e

D
ev

ia
ti

on Class-1
Class-10

Step (ERM)

0 50 100 150 200
Training Epoch

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Fe
at

ur
e

D
ev

ia
ti

on Class-1
Class-10

Step (MFW)

0 50 100 150 200
Training Epoch

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Fe
at

ur
e

D
ev

ia
ti

on Class-1
Class-10

Class 1 (Training) Class 1 (Test) Class 10 (Training) Class 10 (Test)

Figure 9. Feature deviation between the training and test data per class along the training progress. We experiment on CIFAR-10,
using both the long-tailed and the step settings (ρ = 100). We only showed the most major (c = 1, with 5, 000 training samples) and
minor classes (c = 10, with 50 training samples) for clarity. As the number of training epochs increases, the deviation increases, while
MFW can achieve a much smaller deviation (top row). The bottom parts are the corresponding t-SNE embeddings of the training and test
instances from the two classes (at the last epoch).

used for ImageNet [21]. We normalize the images by sub-
tracting the RGB means computed on the training set. In
training, the images are resized to 256 × 256 and flipped
horizontally, and are randomly cropped back to 224× 224.

D. Experimental Results and Analysis
We provide additional experimental results and analysis

in this section.

D.1. The influence of the coefficient α

According to Algorithm 1 of the main paper, we sam-
ple a value λn from a beta distribution with a coefficient α
to mix two features in MFW. With different α values, the
beta distribution behaves differently. For example, the beta
distribution with small α values (i.e., α < 1) favors sam-
pling extreme λn values close to 0 or 1; large α increases
the probability of sampling values near 0.5. We show the re-
sults when using different α in Table 6. We find that for the
step case, a larger α is preferred; for the long-tailed case, a
smaller α is preferred. We select α using the held-out set (or
the validation set for Tiered-ImageNet). See subsection C.2
for details.

D.2. Ablation on the weight function.

We study different β in Equation 12 of the main paper.
As shown in Figure 10, larger/smaller β (smoother/sharper
weight changes) is preferred for long-tailed/step cases. We

Table 6. Test accuracy (%) on CIFAR-10/-100 with different val-
ues of α (for the beta distribution) in MFW.

CIFAR-10 CIFAR-100

α Long-tailed Step Long-tailed Step

0.1 75.9 73.3 43.1 40.8
0.2 76.8 74.3 44.7 42.6
0.5 77.1 75.2 43.6 44.0
1 78.5 77.6 42.1 46.5
5 77.4 80.1 41.2 46.9

0.001 0.01 1 2 4
60

65

70

75

80

85

Te
st

 A
cc

cu
ra

cy
 (

%
)

Long-Tailed
Step

Figure 10. Ablation on the weight function.

further apply Equation 12 to MixUp [76] and ReMix [8]
but do not see improvements. We attribute this to the funda-
mental difference between MFW and them (cf. subsection
3.5): MFW does not change the labels, while MixUp does
and ReMix mixes labels to favor minor classes.

Classification Accuracy of ERM

1 2 3 4 5 6 7 8 9 10
Class Index

0

20

40

60

80

100

Ac
cc

ur
ac

y
(%

)

Train-Acc
Test-Acc

Classification Accuracy of MFW

1 2 3 4 5 6 7 8 9 10
Class Index

0

20

40

60

80

100

Ac
cc

ur
ac

y
(%

)

Train-Acc
Test-Acc

Figure 11. The training and test accuracy per class of a neural
network trained on class-imbalanced data. We trained a Con-
vNet classifier using ResNet-32 [21] on a step imbalanced CIFAR-
10 data set (ρ = 100) [36], following [9]. The first five and last
five Classes have 5, 000 and 50 training instances, respectively.
We compare training with ERM (top) and MFW (bottom). MFW
leads to much higher test accuracy for the minor classes, with just
a slight decrease of that for the major classes.

D.3. Whether MFW can reduce the feature devia-
tion?

Following subsection 5.3 of the main paper, we further
show the t-SNE [46] plots of the features to illustrate the
feature deviation in Figure 9. We apply ERM and MFW
on different imbalance configurations, including both long-
tailed and step cases. The largest major class 1 and the
smallest class 10 are selected for illustration.

In Figure 9, the top row shows the change of feature de-
viation values10 along the training process, where MFW
significantly reduces the feature deviation, justifying our
claims that feature deviation is likely caused by the exag-
gerated gradients between major and minor classes. The
bottom row shows the t-SNE visualization of fθ(x) using
the corresponding model (at the last epoch): circles indicate
the training data and crosses indicate the test data. It can
be seen that there exists feature deviation for class 10 (red)
when applying ERM, which can be reduced using MFW.
With MFW, the training and test features are clustered.

10Please see subsection 5.4 of the main paper and subsection A.2 for the
definition.

Table 7. Test set accuracy (%) on imbalanced CIFAR-10 with
larger imbalance ratio ρ.

Imbalance ratio ρ 500 1000

ERM 64.5 56.5
CDT [72] 66.1 59.0

MFW 65.6 62.0
MFW w/ DRW 67.3 63.0

Table 8. Test accuracy (%) on CIFAR-10/-100. We compare MFW
to [76, 62].

CIFAR-10 CIFAR-100

Imbalance ratio ρ = 100 Long-tailed Step Long-tailed Step

ERM 71.1 65.8 40.1 39.9
Mix-Up [76] 73.1 66.2 39.5 39.8
Manifold Mix-up [62] 73.0 65.4 38.3 39.4
MFW 78.5 80.1 44.7 46.9

D.4. Training and test accuracy across classes

We plot the training and test accuracy on the step imbal-
anced CIFAR-10 (ρ = 100) in Figure 11. We note that, in
evaluating the training accuracy, we do not apply MFW—
MFW is only applied in training the neural networks. We
mention this in subsection 3.2 and subsection 3.4 in the
main paper.

As shown in Figure 11, MFW leads to a much higher
test accuracy for the minor classes (the average is over 60%
in comparison to 40% by ERM), with just a slight decrease
of that for the major classes. In summary, MFW can ef-
fectively facilitate class-imbalanced learning, especially for
the challenging step imbalance cases.

D.5. Label mixing

We compare MFW to mixup [76] and manifold mixup
[62]: they mix both the inputs (or features) and the labels.
As shown in Table 8, MFW outperforms both of them, jus-
tifying that MFW is not regularizing the model predictions.

D.6. Performance on larger imbalance factors

We study the performance of MFW on a long-tailed sce-
nario with larger imbalance ratio ρ on CIFAR-10 in Ta-
ble 7. In detail, we construct the dataset in the same manner
as [9, 5] and set ρ = 500 and ρ = 1000. Since the dataset
is more imbalanced, it becomes more difficult. Compared
to a strong baseline CDT [72], the gain by MFW increases
as ρ increases. Overall, we find that MFW has advantages
in tackling extreme imbalance, e.g., step settings (all minor
classes have 1

ρ training data than the major classes) or larger
ρ in long-tailed settings.

Table 9. Top-1 test set accuracy (%) on ImageNet-LT.

ResNet-10 ResNeXt-50

OLTR [45] 41.9 OLTR [45] 48.7
cRT [30] 41.8 cRT [30] 49.6

τ -Norm [30] 40.6 τ -Norm [30] 49.4
LWS [30] 41.4 LWS [30] 49.9
CDT [72] 41.4 De-confound [58] 48.6

SEQL [57] 36.4 De-confound-TDE [58] 51.8

MFW 40.1 MFW 50.5
MFW w/ DRW 42.0 MFW w/ DRW 51.9

D.7. Results on ImageNet-LT

We show the top-1 accuracy on ImageNet-LT in Ta-
ble 9 with ResNet-10 and ResNext-50. Our MFW achieves
promising results when compared with others.

D.8. Further comparisons on CIFAR

[57] mentioned that they used stronger data augmenta-
tions on CIFAR. Using the same augmentations, we have
47.8 on CIFAR-100 (ρ=200) vs. theirs at 43.4.

D.9. Deferred Re-Weight (DRW)

For step imbalance, MFW w/o DRW outperforms base-
lines in nearly all cases. (See tables in the main paper.) We
include DRW mainly for a fair comparison to [8]. We note
that, deferred scheduling (e.g., DRW) is also included in the
implementation of other methods, e.g., [5, 26, 30, 34, 80].

D.10. MFW on other network architectures

We further study the generalizability of MFW to other
network architectures. Using DenseNet-121 [25], MFW
achieves 76.2/81.2/92.1 for long-tailed CIFAR-10 at ρ =
200/100/10, higher than ERM which has 70.2/77.6/91.3
(cf. Table 1 in the main paper).

