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1. Implementation Details
We implement the proposed method in PyTorch platform

with SGD optimizer. We use a batch size of 1024. The ini-
tial learning rate is set 0.01 and scaled by a factor of 0.1
for every 50 epochs. The L2 weight decay coefficient is set
to 5 × 10−4. We empirically set T = 2 for both YouTube
and TVSum dataset, and the training procedure is termi-
nated after 200 epochs. All experiments were conducted on
a machine with a single NVIDIA TITAN RTX GPU.

For a fair comparison, we reproduced and reported the
results of the MINI-Net [5], which also utilizes the auditory
and visual information, with their officially released codes
and trained on our self-collected dataset. Following the pro-
tocol widely used in [6, 5], we trained the model on self-
collected dataset, then evaluate on the benchmark datasets
(i.e., YouTube Highlights and TVSum). In particular, Xiong
et al. [6] collected approximate 10 million videos from In-
stagram for training, and Hong et al. [5] trained MINI-Net
with their self-collected approximate 200k videos with 8k
videos per topic through contacting with the authors since
they did not mention these in the paper. However, those
datasets are not publicly available in which we doubt with
their actual performance. For this reason, following the
same protocol [6, 5], we crawled about 35k videos (average
of 1.4k videos per topic) based on hashtags from Instagram
as training set .

Besides, we sample the topic-specific videos that are
shorter than 60 seconds as positive videos, and take the
video longer than 60 seconds in videos with different tags as
negative videos. To preprocess each video, we break a video
up uniformly into one-second clips and randomly sample
the consecutive clips (τ = 60 clips) during training.

For audio and visual feature extraction, we use
3DResNet-34 network [3] pretrained on Kinetics-600
dataset [1] to extract the visual feature fv ∈ R512, and the
audio feature fa ∈ R128 is extracted by VGGish model [4]
pretrained on AudioSet dataset [2].

*Equal contribution.
†Corresponding authors.

Besides, we follow the standard evaluation protocol as
[6, 5], i.e., the mean average precision is utilized to measure
the model performance on YouTube Highlight dataset, and
Top-5 mean average precision for TVSum dataset.

2. Computation Issue
In this part, we investigate the computation efficiency

for audio-visual tensor fusion module. Assume the inputted
video segment embedded features are denoted as fv ∈ Rdv
and fa ∈ Rda . Then the time complexity of computing
fused features fh ∈ Rdh with core tensor Tc is O(dvdadh)
since fh = (Tc ×1 fv) ×2 fa. For simplicity, we set
dv = da = dh = d, so the time complexity of above equa-
tion is O(d3).

However, the low-rank audio-visual tensor fusion mod-
ule of our approach only requires O(Rd2), which is faster
than the original version since R � d. Therefore, our
method is more efficient compared with the method with-
out low-rank constraint.

3. More Quantitative Results
We vary the rank constraints R to the audio-visual fea-

ture fusion. As explained earlier, we use a series of rank
one kernels to decompose the multi-modal feature represen-
tation Tc that we argues by doing his, we project the fused
features into an unimodal subspace. We found it is cru-
cial to choose the right amount of constraints to balance the
complexity of decomposition while maintaining the useful
interactions between video and audio features. As we can
see in Figure 1, there is a considerable gain in the detection
performance as stronger constraint putting into place until
the critical point i.e., R = 8 that excessive constraints will
no longer help and the performance starts to drop moder-
ately.

To further validate the benefit of combining multiple
modalities, we trained the models without audio features or
visual features, and the testing results are summarized in Ta-
ble 1. From the table, we can observe that even only trained
with visual features, our method is still able to achieve com-
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Figure 1. Variations in performance by constrain the rank R of
core tensor Tc.

Methods YouTube TVSum
MINI-Net* w/o vision 0.4853 0.5474
MINI-Net* w/o audio 0.5539 0.6675
MINI-Net* [5] 0.5837 0.7020
Ours w/o vision 0.5316 0.6041
Ours w/o audio 0.5892 0.7364
Ours 0.6297 0.7682

Table 1. Performance comparison of different models with single
modality and dual-modalities on two datasets. * indicates our im-
plementation trained on self-collected dataset.

Number of Clips YouTube TVSum
τ = 20 0.6173 0.7427
τ = 40 0.6208 0.7415
τ = 60 0.6297 0.7682
τ = 80 0.6223 0.7440

Table 2. Performance comparison of different number of clips in
training process on two datasets.

parable results than MINI-Net [5]. Besides, it can be ob-
served that visual features contribute to the model’s perfor-
mance more significantly than the audio features.

We also investigate the effect of sampled video lengths
for training. In Table 2, it can be observed that the per-
formance varies not significantly with different number of
sampled clips during the training procedure, and we get the
best performance when τ = 60.

In addition, we investigate the influence of L1 regular-
ization coefficient (β) to the variance margin Xvar and the
score margin Xs, and the results are shown in Table 3. It
shows that the smaller sparsity regularization coefficient
tends to produce better performance.

Moreover, we conduct experiment on the CoSum dataset
in addition to the YouTube Highlights and TVSum datasets.
The CoSum dataset contains 51 videos with 10 different
topics. The experimental results are summarized in Table
4. We can observe that our method achieves 0.9304 mAP,
which outperformed other state-of-the-art methods. How-
ever, since CoSum dataset is dominated by single scenes
that can be easily detected, the improvement would not be

β YouTube TVSum
0.0001 0.6297 0.7682
0.001 0.6272 0.7603
0.01 0.6033 0.7195
0.1 0.6035 0.7161

Table 3. Average mAP comparison under different scale of sparsity
regularization β on two datasets.

significant.

4. Supplementary Proof
In this section, we provide mathematical proof of our

video score fusion scheme in attention-gated instance ag-
gregation module in order to alleviate gradient vanishing
problem encountered during positive video optimization.

We revisit the conventional Noise-OR video score aggre-
gation method as:

p̂
(i)
V = 1−

m∏
s=1

(1− p(i)s ), (1)

where p
(i)
s is the confidence score for segment v(i)s of

video V(i). Then, we consider the optimization for posi-
tive videos, and take the partial derivative of binary cross
entropy loss L as follows:
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Then, provided that we pick two arbitrary segments
u, v ∈ [1,m] in the positive video, and set p(i)u = ε, p

(i)
v =

1 − ε, where ε → 0. In addition, the rest p(i)j are set to
δ ∈ (0, 1). The video score in Eq.(1) is computed as:

p̂
(i)
V = 1−

m∏
j=1

(1− p(i)j ) = 1− ε(1− ε)δm−2, (3)

which indicates that p̂(i)V → 1. Therefore, we can conclude
that ∂L/∂p(i)j → 0 from Eq.(2), which results in the gradi-
ent vanishing issue during the optimization.

By contrast, in the attention-gated instance aggregation
module, we define video score as:

ps = σ(Wpc
(T )
s + bp), (4)

p̂
(i)
V = σ

Wp

m∑
j=1

αjc
(T )
j + bp

 , (5)

where σ(·) is the normalized function represented as
σ(x) = 1/(1 + exp(−x)). For simplicity, we set αi =



Topic Supervised Methods Weakly Supervised Methods
KVS DPP sLSTM SM SMRS Quasi MBF CVS SG DSN VESD MINI-Net* Ours

Base Jump 0.662 0.672 0.683 0.692 0.504 0.561 0.631 0.658 0.698 0.715 0.685 0.7992 0.8292
Bike Polo 0.674 0.682 0.701 0.722 0.492 0.625 0.592 0.675 0.713 0.746 0.714 0.9421 0.9228
Eiffel Tower 0.731 0.744 0.749 0.789 0.556 0.575 0.618 0.722 0.759 0.813 0.783 0.9087 0.9339
Excavators River Cross 0.685 0.694 0.717 0.728 0.525 0.563 0.575 0.693 0.729 0.756 0.721 0.9866 1.0000
Kids Play in Leaves 0.701 0.705 0.714 0.745 0.521 0.557 0.594 0.707 0.729 0.772 0.742 0.9838 1.0000
MLB 0.668 0.677 0.714 0.693 0.543 0.563 0.624 0.679 0.721 0.727 0.687 0.9645 0.9756
NFL 0.671 0.681 0.681 0.727 0.558 0.587 0.603 0.674 0.693 0.737 0.724 1.0000 1.0000
Notre Dame Cathedral 0.698 0.704 0.722 0.759 0.496 0.617 0.594 0.702 0.738 0.782 0.751 0.9636 0.9772
Statue of Liberty 0.713 0.722 0.721 0.766 0.525 0.551 0.624 0.715 0.743 0.794 0.763 0.8833 0.9058
Surf 0.642 0.648 0.653 0.683 0.533 0.562 0.603 0.647 0.681 0.709 0.674 0.7394 0.7598
Average 0.684 0.692 0.705 0.735 0.525 0.576 0.602 0.687 0.720 0.755 0.721 0.9171 0.9304

Table 4. Performance comparison (Top-5 mAP score) on CoSum dataset. Our method outperforms against all of the compared state-of-
the-art methods. * indicates our implementation trained on self-collected dataset.

1(i = 1, · · · ,m) and bp = 0. Therefore, we can reform the
video score as follows:
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Similarly, the gradient of binary cross entropy loss L can
be computed as:
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Without loss of generality, taking the same settings men-
tioned above, we can observe:
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1

1 +
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where δ ∈ (0, 1) is a constant, which shows that p̂(i)V 6→ 1.
As a consequence, ∂L/∂p(i)j = 1

1+( 1
δ−1)m−2(δ(1−δ)) 6→ 0.

Besides, we also represent the visualization of binary
case between original Noise-OR method and our proposed
method in Figure 2. The area that gradient vanishes for
Noise-OR method is much larger than that of our proposed
method, which verifies the fact that our method can ease the
gradient vanishing problem.

5. Visual Examples

In addition, we also illustrate the highlight detection re-
sults in Figure 3.
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(a) Visualization of the gradient of Noise-OR method in bi-
nary case.
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(b) Visualization of the gradient of our improved approach in
binary case.

Figure 2. The visualization of gradient for two different instance
aggregation schemes. (Best viewed in color.)
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Figure 3. Qualitative results of our method on highlight detection. (Best viewed in color.)
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