
Supplementary Material for “Exploiting Multi-Object Relationships for
Detecting Adversarial Attacks in Complex Scenes”

In the supplementary material, we conduct case study on
attacks that can bypass our context consistency checker and
benign images that are detected as adversarial (Section 1).
We present the implementation details about the baseline
models (Feature Squeeze and SCEME) used in the paper.
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Figure 1: The adversarial examples that our proposed
SCENE-BERT model cannot detect.
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Figure 2: The benign example that our proposed SCENE-
BERT model detect as adversarial.
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Figure 3: The distribution of consistency score for three
types of attacks.

1. Case Study

In this section, we first show (1) attack examples that
cannot be detect by our language-based consistency checker
SCENE-BERT and (2) benign examples that are reported as
adversarial. Then we present the distribution of consistency
scores.

False Negatives. For the adversarial image on left hand
side of Figure 1, the attack goal is to misclassify the person
into a horse. Because the (misclassified) detection result
will be described “a person (and) a horse,” which is com-
mon, our context-consistency-based detector cannot tell the
image has been perturbed. For the adversarial image on
right hand side of Figure 1, the attack goal is to misclassify
the rightmost keyboard into a laptop. Similarly, because it
is ordinary for a laptop to co-occur with another laptop, our
approach cannot detect the image as perturbed.

False Positives. There are also benign examples that are
detected as adversarial by SCENE-BERT. Figure 2 shows
an example. In this case, a person lying on top of a cow is
common, but a boat co-occur with cow is rare in the training



set or has never been seen before. In this case, though the
object boat is indeed an out-of-context anomaly, it is not an
attack.

Density Graph. To understand how common such cases
are, we plotted the distribution of consistency score for the
three types of attacks and the benign cases in Figure 3. As
we can see, the consistency score for misclassification ap-
pear attacks mainly concentrate at around 0, while the ma-
jority of the benign images have higher consistency score.
Hiding attacks are hard to detect because hiding attacks
usually do not violate context-consistency (e.g., hide one
person from a group of person will not cause the context
change too much). However, hiding attacks are still de-
tectable in subtle cases. For instance, a watch should be
wear by a person or located on a table, if the person are
hidden and not table detected, then the consistency can be
considered attacked.

These false negatives and false positives are caused by a
fundamental limitation of our consistency-based attack de-
tection approach—if the attack itself is context-aware, then
we cannot use context-consistency to detect such attacks;
on the other hand, if a benign case has never been seen be-
fore, then we may also report it as attacks. However, we
argue that (1) false positives can be reduced by extending
the training set (e.g., by using natural language datasets),
(2) as context imposes additional constraints, constructing
context-aware attacks are likely to be more expensive; and
(3) more importantly, context-consistent attacks may cause
be able to lead to dire consequences (e.g., misclassifying
STOP sign to YIELD sign may not lead to traffic accidents).

2. Implementation Details

2.1. Feature Squeeze

In this subsection, we explain how the baseline Feature
Squeeze is implemented. Algorithm 1 shows the algorithm.
ImgO denotes the original image, ImgQ defined in line 1
denotes the quantized image after squeezing. PRO defined
in line 2 denotes the prediction result for the original image
from object detector g(·), while PRFS defined in line 3 de-
notes the prediction result of quantized image. RO and RFS

defined in line 7, 9 denote one region from the prediction
result for original image and quantized image respectively.
Note that we take the highest distance among all regions as a
represent to the distance of whole image. Furthermore, for
each region, we take the lowest distance calculating from
all its overlapped as the distance for the queried region. Un-
der the consideration that we usually take the category with
highest confidence score for the regions dumped from ob-
ject detector, we manually set rule, i.e. the distance is 1 for
regions with different predicted categories.

Algorithm 1: Calculate the distance using Feature
Squeeze of an image.

Input : Image to be tested ImgO,
the quantilize function f(·),
the object detector g(·)

Output: Distance d
1 ImgQ = f(ImgO)
2 PRO = g(ImgO)
3 PRFS = g(ImgQ)
4 d = 0
5 n = length of PRFS
6 for i = 1 to n do
7 RFS = PRFS[i]
8 minDistance = 1
9 for RO in getOverlap(RFS ,PRO) do

10 distance = getDistance(RFS , RO)
11 minDistance = min(distance,minDistance)
12 end
13 d = max(minDistance, d)
14 end
15 if RO in PRO overlap with nothing in PRFS then
16 d = 1
17 end
18 return d

2.2. SCEME

In this subsection, we explain how the baseline SCEME
model is implemented. Algorithm 2 illustrates how we
adapted the original SCEME, which works at region pro-
posal level, to make it work at whole image level. PR de-
fined in line 2 denotes the prediction results. CP defined
in line 6 denotes the Context Profile extracted from inter-
mediate layer of F-RCNN which will be passed to SCEME
model to generate a reconstruction error. We take the high-
est reconstruction error as the reconstruction error of the
whole image.

Algorithm 2: Calculate the SCEME reconstruction
error at image level.

Input : Image to be tested Img,
the F-RCNN object detector f(·),
the trained SCEME function g(·, ·),

Output: Reconstruction Error e
1 e = 0
2 PR = f(Img)
3 n = length of PR
4 for i = 1 to n do
5 Category, CP = PR[i]
6 rec = g(Category, CP )
7 e = max(e, rec)
8 end
9 return e

Note that because the categories in MS COCO dataset
are biased and SCEME requires on auto-encoder for each
category, it cannot be trained well on categories that rarely
occur. For this reason, we did not measure SCEME’s per-
formance on the MS COCO dataset.
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Figure 4: ROC-AUC for F-RCNN on COCO
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Figure 5: ROC-AUC for YOLO on VOC
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Figure 6: ROC-AUC for YOLO on COCO

3. Additional Results
We plot the ROC-AUC curves for F-RCNN on COCO,

YOLO on VOC, and YOLO on COCO in Figure 4, Figure 5,
and Figure 6.


