
Supplementary Material for Hierarchical Graph Attention Network for Few-shot Visual-Semantic
Learning
Image and Text Embedding

For image embedding of an image Ii, we build a neural network ϕ to output visual representation ϕ(Ii;θϕ) by following
the architecture used by FPAIT [11], which contains four 3 × 3 convolutional blocks with batch normalizations and ReLU
activations. The numbers of feature channels in these four blocks are 64, 96, 128 and 256, respectively. There is a 2×2 max-
pooling layer after each of the first three blocks, and a global-pooling layer after the last block. The output image embedding
has a dimension of 256.

For text embedding of a question/description Qi, we build a neural network ψ to output the semantic representation
ψ(Qi;θψ) as follows. We first transfer each word in Qi into a feature vector using the pre-trained 100D GloVe [38] vectors,
and use randomly initialized weights for all words which are out of GloVe’s vocabulary, and then use the temporal convolu-
tional network (TCN) [27] to obtain the embedding of the word sequence. Same as FPAIT [11], the output text embedding
has a dimension of 512.

Meta-training/testing Paradigm

The overall meta-training/testing algorithms for HGAT are summarized in Algorithms 1 and 2.

Algorithm 1 The process of meta-training for HGAT
1: Input: A set of T tasks {Tt}Tt=1 generated from a meta-training dataset Dmtr, where {Tt}Tt=1 = {St}Tt=1 ∪ {Qt}Tt=1

2: Initialize θϕ ∪ θψ ∪ {Wl
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3: while not done do
4: Sample batch of tasks < Tt > from task set {Tt}Tt=1

5: for all Tt do
6: {V1

i }, {S1
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11: for all l = 1, 2, 3 do
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13: end for
14: Compute the loss and update θϕ ∪ θψ ∪ {Wl
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15: end for
16: end while

Algorithm 2 The process of meta-testing for HGAT

1: Input: A task T sampled from {TT+t}T
′

t=1, where T = S ∪Q, S = {(Ii,Qi,Ai)}N×K
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3: Output: {Âi}N×K+M
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9: for all l = 1, 2, 3 do
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11: end for
12: {Âi}N×K+M
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Benchmark Datasets

Toronto COCO-QA consists of 78, 736 question-answer (QA) pairs for training and 38, 948 QA pairs for testing. Each
QA pair associates with one image from MSCOCO [30] and is labeled with one of the four QA types (i.e., object, number,
color and location). Following the same pre-processing steps of FPAIT [11], the Toronto COCO-QA is transformed into the
format which can be used for the few-shot VQA. Consequently, 57, 834 QA pairs with a set of 256 unique answers are used
in the meta-training phase, and 13, 965 QA pairs with a set of 65 unique answers are used in the meta-testing phase. The two
answer sets are mutually exclusive.

Visual Genome-QA, the largest dataset for VQA, contains over 1.7 million QA pairs with more than 100, 000 images
sampled from MSCOCO [30]. Compared with Toronto COCO-QA, more categories of questions, which may start with the
“who”, “what”, “where”, “when”, “why”, “how” and “which”, are provided. The Visual Genome-QA is transformed into
the format for few-shot VQA with similar pre-processing steps for Toronto COCO-QA. Finally, there are 554, 795 QA pairs
with a set of 244 unique answers for meta-training, and 136, 473 QA pairs for meta-testing with a set of 82 unique answers.
The two answer sets are mutually exclusive.

COCO-FITB, proposed and used by FPAIT [11], is transformed from MSCOCO [30] by processing MSCOCO Cap-
tions [8] to generate image-caption pairs in the fill-in-the-blank format. 181, 844 image-caption pairs with a set of 159
unique blank words are used in meta-training, and 34, 919 image-caption pairs with a set of 43 unique blank words are used
in meta-testing. The two sets of blank words are mutually exclusive.

Baseline Implementation

We re-implemented the Prototypical Net [42], Relation Net [44], R2D2 [6], DN4 [28], GNN [14], and EGNN [22] and
extended these algorithms from few-shot classification to few-shot visual-semantic learning. For Prototypical Net, Relation
Net, R2D2 and DN4, we adopted the concatenation of the corresponding visual and semantic representations as input feature
for each sample in the support/training sets and query/test sets. For GNN, each sample from the support or query sets is
represented as a node in the first layer of GNNs, and each node is initialized as the concatenation of its visual and semantic
representations as well as the one-hot encoding of its label. Note that for the unknown labels (e.g., query samples), unlike
Garcia et al. [14], the one-hot encoding is initialized to a zero vector instead of a uniform vector. For EGNN, both of the
node features and the edge features need to be initialized. The node features are initialized as the concatenation of its visual
and semantic representations. Following the definition in Kim et al. [22], each edge feature is a 2-dimensional vector with
a value representing the relationship between its two connected nodes. If the two connected nodes belong to one class, the
edge feature is set to [1 0]; otherwise, it is set to [0 1]. In addition, all the edges connected to the samples with unknown labels
are set to [0.5 0.5]. It is nothing that for both of the GNN and EGNN, only one query node exists in each layer of GNNs.

Compare to Standard VQA/IC Methods

Method
COCO-QA COCO-FITB

5-way accuracy 5-way accuracy
1-shot 5-shot 1-shot 5-shot

HCA 55.40 66.78 54.33 62.91
SAAA 56.72 67.23 55.67 64.16

CNN+TCN 57.19 71.82 59.95 70.32

HGAT 63.13 75.41 63.36 74.14
Table 5. Comparison with standard VQA and IC methods.

Since Dong et al. [11] compared on COCO-QA and COCO-FITB, we followed its setting and strategies for a fair com-
parison. Results in Table 5 show that the HGAT is more suitable and outperforms standard methods by a significant margin.

Ablation Studies

Based on the model only with the three-layer relation-aware GNNs in Stage-2 (Case-1), we gradually add visual-specific
GNNs (Case-6), semantic-specific GNNs (Case-7), both visual-specific GNNs and semantic-specific GNNs (Case-8) and
attention-based co-learning framework (Case-9) in Stage-1 for ablation studies. Corresponding cases (i.e., Case-2 to Case-5)
without the 3-layer relation-aware GNNs in Stage-2 are also exploited.



Case Stage-1 Stage-2 Visual Semantic Attention-based 5-way accuracy 10-way accuracy
Relations Relations Co-learning 1-shot 5-shot 1-shot 5-shot

1 ✓ 76.10 82.14 63.99 66.30
2 ✓ ✓ 75.33 81.67 62.08 66.42
3 ✓ ✓ 75.84 80.25 62.64 65.76
4 ✓ ✓ ✓ 76.78 82.32 64.16 68.22
5 ✓ ✓ ✓ ✓ 77.47 83.26 64.90 70.03
6 ✓ ✓ ✓ 77.55 84.01 63.77 69.26
7 ✓ ✓ ✓ 78.14 83.88 64.23 68.61
8 ✓ ✓ ✓ ✓ 78.86 84.55 65.21 70.06

9 ✓ ✓ ✓ ✓ ✓ 79.56 86.10 66.62 72.13
Table 6. Full table of ablation studies on Visual Genome-QA for few-shot visual question answering.

Besides the Vi and Si terms (which contains the intra- and inter-relationship from both visual and semantic features) in Eq.
9, whose effects have been justified in the ablation studies of Section 4.4, we also studied the efficacy of ϕ(Ii), ψ(Qi), and
h(Ai) using 5-way 1-shot task on Visual-Genome-QA. As shown in Table 7, the absence of any term leads to a performance
degradation.

w/o h w/o ϕ w/o ψ Full HGAT

5-way 1-shot 77.88 78.01 78.53 79.56
Table 7. Study on the efficacy of ϕ(Ii), ψ(Qi), and h(Ai) in Equation 9.

Experiments have been conducted on Visual Genome-QA to study the number of GNNs layers in Stage-1 (i.e., modal-
specific GNNs) and Stage-2 (i.e., relation-aware GNNs). Results on 5-way 1-shot and 5-way 5-shot classifications in terms
of the accuracy are shown in Table 8. Each row represents the results of the same number of model-specific GNN layers
(Stage-1), and each column represents the results of the same number of relation-aware GNN layers (Stage-2). Specifically,
when the numbers of GNN layers in Stage-1 and Stage-2 are set to 2 and 3, respectively, the optimal performance is achieved.

# of Layers 2 3 4

2 78.33/84.69 79.56/86.10 79.16/85.51

3 77.85/83.97 78.90/85.01 78.77/85.63
Table 8. Study on GNNs layers in Stage-1 (row-wise) and Stage-2 (column-wise).

Time Complexity Analysis

Given a N -way K-shot task with M query samples, each GNN layer has n = N ×K+M nodes. The time complexity is
O(n3) for the attention (Eqs. (5), (6), and (11)) and O(n2) for the feature updates (Eqs. (7), (8), and (12)). Thus, the overall
time complexity is only O(Ln3) for HGAT with L GNN layers.

Visualization Samples



Figure 5. Attention visualizations of the 3rd layer in the relation-aware GNNs for 5-way 1-shot VQA on Visual Genome-QA. Dark/light
color denotes higher/lower values. Red/blue color denotes correct/wrong predictions on query samples.
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