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1. Algorithm Details
The training of MIC-GANs is split into two stages, the

initialization stage and the Adversarial Chinese Restaurant
Process (ACRP) Stage.

1.1. Initialization Stage

The initialization stage is to initialize the generator, en-
abling it to produce images of good quality. At the same
time, we require the generator to produce conditioned out-
put without supervised class labels.

The detailed algorithm for initialization is shown in Al-
gorithm 1. The training procedure is the same as the ordi-
nary GANs, except that the generator is given a conditioned
input. Note that the discriminator is not conditional, so it is
not a conditional GAN. Categ(α1, ..., αK) is the category
distribution where index number k is sampled according to
the probability proportional to αk.The conditional input for
generator is uniformly sampled, i.e. α1, ..., αK = 1

K .
After initialization, the generator can produce condi-

tioned outputs. Generally, the outputs from one condition
are more likely to be close to one class of images. How-
ever, because K is different from the ground-truth class
number, the outputs from one condition often either con-
tain only a part of one class or multiple classes. Taking
MNIST for example, when using K = 20 which is larger
than the ground-truth class number, after initialization there
may be two modes generating ’6’ and one mode generating
both ’7’ and ’9’. However, it will be resolved in the later
ACRP stage.

1.2. ACRP Stage

The main algorithm of ACRP is shown in Algorithm 2,
and the Chinese Restaurant Process Sampling algorithm is
shown in Algorithm 3. In practice, the encoder network in
Q is initialized before training in every epoch to prevent
overfitting. The parameters of the GMMs need to be initial-
ized before training. We let the covariance matrices Σks be
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Variable Meaning
X the whole real images
K the number of modes
N the total number of real images
GφG generator parameterized by φG

DφD discriminator parameterized by φD

QφQ classifier parameterized by φQ

z the input noise for generator
αk the sampling probability of mode k
ci the picked mode index for each real image i
µk,Σk the parameters of the kth Gaussian
Nk the number of real images associated with mode k
pi,k the likelihood of real image i on mode k
e the embedding of an image, from encoder Q

Table 1. Symbols of MIC-GANs Training

Algorithm 1 Initialization
Require:
epochs - the number of total training epochs;
Ninit - the number of images for initialization training;

1: for n = 1 to Ninit do
2: Sample x ∼ X
3: Sample z ∼ N (0, 1), c ∼ Categ(α1, ..., αK)
4: Generate fake image x̂ = G(z, c)
5: Optimize φg and φd via GAN loss
6: end for

the identity matrix, and initialize the mean µks in the way
that they become the vertices of a high-dimensional simplex
and are equidistant to each other. This is to ensure that the
Gaussians are distinctive. Next, the dimensionality of the
latent space of the encoder in Q needs to be decided. Theo-
retically, it can be any dimension that is smaller than that of
the data space. In practice, we set the dimension of both the
image embedding and GMM to K which is the number of
modes, so that conveniently the µks are the basis vectors of
such a K-dimensional space. One straightforward solution
is to use the one-hotK-vectors as the µks’ initialization. As
for the encoder loss LQ(e, µc), we maximize the log likeli-



Algorithm 2 Adversarial Chinese Restaurant Process
Require:
epochs - the number of total training epochs;
NQ - the number of images for training encoder in each
epoch;
NGD - the number of images for training generator and
discriminator in each epoch;
iters1 - the number of iterations for CRP sampling and
GMM updating;
Initialize() ;

1: for epoch = 1 to epochs do
2: for n = 1 to NQ do . Train Q
3: Sample z ∼ N (0, 1), c ∼ Categ(α1, ..., αK)
4: Get embedding e = Q(G(z, c))
5: Optimize φQ via encoder loss LQ = LQ(e, µc)
6: end for
7: for iter = 1 to iters1 do . Classify x
8: for xi in X do . Computing likelihood
9: ei = Q(xi)

10: pi,k = Gauss(ei|µk,Σk) for k = 1 to K
11: end for
12: Sample {ci}Ni=1, {Nk}Kk=1 via CRP (Alg. 3)
13: Ek ← ∅ for k = 1 to K
14: Eci ← Eci

⋃
{ei} for each ei

15: for k = 1 to K do . Update GMMs
16: Update µk and Σk with Ek
17: end for
18: end for
19: αk ←

Nk
N

20: for n = 1 to NGD do . Train GAN
21: Sample xi ∼ X , and fetch corresponding ci
22: Sample z ∼ N (0, 1), c ∼ Categ(α1, ..., αK)
23: Generate fake image x̂ = G(z, c)
24: Optimize φg and φd via conditional GAN loss
25: end for
26: end for

hood of e with respect to the Gaussian with µc as its mean.
Likelihoods in GANs. We do not solve the likelihood

problem of GANs directly. MIC-GANs employ a surrogate
density estimator. The design is due to the following rea-
sons. First, MIC-GANs are designed to work essentially
with any GANs. So the density estimation needs to be in-
dependent of the specific GAN architecture. Also, different
GANs are designed for different tasks, e.g. StyleGAN, Big-
GAN, etc. They all contain specific architectures optimized
for their aimed tasks. Therefore, we choose to keep any
chosen GAN intact under MIC-GANs. Employing a sur-
rogate density estimator is our current solution, and we are
actively looking for a ‘true’ solution.

To help understand ACRP, we present a visualization
(Figure 1) of the procedure of our algorithm with a sim-
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Figure 1. The transformation of classification results and GMMs
in the ACRP stage. In each small figure, the small dots represent
embeddings of training images from encoder Q, with the triangle
dots representing number ‘7’ and the circle dots representing num-
ber ‘9’. The colors of the dots represent the classifications to three
modes. The background color visualizes the shape of GMMs. In
each epoch, the left two figures show the classification results con-
ducted directly from the gaussian probability and after CRP sam-
pling and the right figure shows the updated GMMs based on the
classification results after CRP sampling.

ple dataset which only consists of number ‘7’ and number
‘9’ from MNIST. The figure visualizes line 7-18 of Algo-
rithm 2. In the algorithm, we set the embedding dimension
to be 2 with K = 3, iters1 = 1, iters2 = 1, and we fix the
means of GMMs to be three vertices of an equilateral trian-
gle for better visualization quality. As shown in Figure 1,
at first, ‘mode 1’ contains most ‘9’s and ‘mode 2’ contains
most ‘7’s while ‘mode 3’ contains both ‘9’s and ‘7’s. With
the algorithm progressing, the number of images classified
to ‘mode 3’ is gradually reduced, because more ‘9’s that
were originally classified to ‘mode 3’ are now classified to
‘mode 1’, and similarly ‘7’s that are originally under ‘mode
3’ are now classified to ‘mode 2’. In Epoch 4, most of the
images are divided into two modes and the classification
is almost correct. Meanwhile, the original ‘mode 3’ basi-



Algorithm 3 Chinese Restaurant Process Sampling
Require:
iters2 - the number of iterations for CRP sampling;

1: Nk ← 0 for k = 1 to K
2: for xi in X do
3: ci ← argmax({pi,k}Kk=1)
4: Nci = Nci + 1
5: end for
6: for iter = 1 to iters2 do
7: for xi in X do
8: Nci = Nci − 1
9: βk ← Nk · pi,k for k = 1 to K

10: βk ←
βk∑
βk

for k = 1 to K

11: Sample ci ∼ Categ(β1, ..., βK)
12: Nci = Nci + 1
13: end for
14: end for

cally disappears as the probability of it being sampled again
becomes nearly zero. To see this, N3 in line 12 in Algo-
rithm 2 after CRP becomes very small and the probabil-
ity of ‘mode 3’ being sampled again is proportional to N3.
Figure 1 shows the ‘richer gets richer’ property of Chinese
Restaurant Process.

2. Implementation Details

2.1. Network Architecture

We adopt different GAN models including DC-
GAN [11], StyleGAN2 [4] and StyleGAN2-Ada [3] to val-
idate our algorithm. Specifically, in order to achieve condi-
tioned generation, we modify the input of the generators to
take conditions. The detailed implementation of the con-
ditional inputs is shown in Figure 2. For DCGAN and
StyleGAN2-Ada, the condition of the generator is specified
by adding the conditioned latent code Cc to the noise z. In
StyleGAN2, we tried to control the condition by picking
one of K constant inputs for the synthesis network.

The network architecture of discriminator needs to be
handled differently in different stages because the discrim-
inator needs to take conditions in ACRP stage but the con-
ditions are not reliable in the initialization stage. So we
keep the discriminator as the original one in DCGAN or
StyleGAN2 during initialization, and in ACRP stage, mod-
ify it to take conditions. For the discriminator of DC-
GAN and StyleGAN2, we follow the approach of traditional
cGAN [7], and for the discriminator of StyleGAN2-Ada, we
follow the approach in [8]. After initialization and at the be-
ginning of the ACRP stage, a condition input is added to the
discriminator.

For the network architecture of encoder in Q, we simply
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Figure 2. The conditional input heads of the generators for DC-
GAN, StyleGAN2 and StyleGAN2-Ada.

training Q sampling training GAN
DCGAN 0.5mins 2.6mins 4.5mins

StyleGAN2 0.5mins 2.6mins 15mins
Table 2. Training time distribution for one epoch on MNIST.

epochs 1 5 9 13 19
purity 0.839 0.908 0.911 0.927 0.929

Table 3. Purity vs sampling epochs on MNIST with K = 15.

adopt a multi-layer convolutional network. For the dataset
of MNIST, FashionMNIST, and Hybrid, we use a 4-layer
CNN with a fully connected output layer, and for the dataset
of CatDog, CIFAR and Tiny Imagenet, we use a 7-layer
CNN with a fully connected output layer. Both of them do
not use BatchNorm Layer.

Besides the DCGAN and StyleGAN, there are other
GANs that are also suitable for mode separation, e.g.,
FiLM [10].In fact, our algorithm can be applied to any con-
ditional GANs theoretically.

2.2. Training Details

Images in MNIST, FashionMNIST, Hybrid, CIFAR and
Tiny Imagenet are resized to 32, and images in CatDog are
resized to 64. When training, the batch size is set to 64 for
CatDog and CIFAR, and 256 for the other datasets. During
initialization, Ninit is set to 2400k for the MNIST Fash-
ionMNIST, Hybrid dataset, 1000k for the CatDog dataset,
2000k for the CIFAR and Tiny Imagenet dataset. In ACRP
stage, NQ is set to 64k, and NGD is set to 300k for
the MNIST FashionMNIST, Hybrid dataset, 100k for the
CatDog dataset, 200k for the CIFAR and Tiny Imagenet
dataset. We trained the MIC-GANs for totally 40 epochs in
ACRP stage, as the classification results of the real images
converge quickly, we stop CRP Sampling (re-classification)
after 10 epochs, so the GAN can focus on improving the
quality of image generation.

For the dataset of Tiny ImageNet, we picked 10 classes
for the MIC-GANs training, which are ‘goldfish’, ‘black
widow’, ‘brain coral’, ‘golden retriever’, ‘monarch’, ‘beach
wagon’, ‘beacon’, ‘bullet train’, ‘triumphal arch’, ‘lemon’.
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Figure 3. Our results on the MNIST and Hybrid dataset using DCGAN and StyleGAN2 with different Ks, compared to DMGAN. Each
row is generated from a mode, and the rows are sorted by αs. The red boxes mark the top nmodes in the results, where n = 10 for MNIST
and n = 12 for Hybrid.



3. Quantitative Results

Table. 2 shows the training time distribution for one
epoch on MNIST dataset. We find that the sampling in
learning the prior is not the most time-consuming compo-
nent, while the training of the GANs itself dominates the
training time. And the situation is similar on all datasets.

In Table. 3, we show the relationship between the purity
and sampling epochs on the MNIST dataset. We find that
the purity converges quickly in the first few epochs (simi-
lar on other datasets). So we stop the CRP sampling after
10 epochs and use the stable classification results for GAN
training.

4. Generation Results

Figure 3 visualizes the MNIST and Hybrid results of our
method and DMGAN [5]. We can find that even using dif-
ferent Ks, our method can provide stable results, which
demonstrates the ability of unsupervised clustering of our
method. DMGAN achieves a similar effect as ours, but it
often learns mixed modes, e.g., the confusion between ’4’
and ’9’ on MNIST. Furthermore, our method is flexible with
the architecture of GAN without compromising the train-
ing speed much, which means that we can employ complex
GANs such as StyleGAN2 on complex datasets. However,
it will be prohibitively expensive for DMGAN to achieve
the same because DMGAN requires K generators for K
modes, while MIC-GANs only require K latent codes.

Figure 4 shows the results of InfoGAN [1], Cluster-
GAN [9] and DeliGAN [2] on Hybrid with different Ks.
Obviously, these methods fail to perform correct clustering
when the ground-truth K = 12 is unknown and the best
way is to make multiple guesses. However, when K < 12,
there will be mixed modes; when K > 12, there will be
repetitive modes, as well as mixed modes. This shows that
these methods either cannot produce good results or require
a large number of guesses in the absence of the ground-
truth, while MIC-GANs can generate satisfying results in
one run.

Figure 5 shows the generation results of our method,
Self-Conditioned GAN [6] and StyleGAN2-Ada [3] on CI-
FAR with different Cs and Ks. CIFAR is a difficult dataset
for generation, and it is an even more challenging dataset for
conditioned generation based on unsupervised clustering.
In our method, some modes can generate images that are
from clear-cutting single classes, e.g., ‘automobile’, ‘air-
plane’, ‘horse’. In other cases, images generated from one
mode consist of images from two or more classes. This
reflects the fact that images can be clustered based on dif-
ferent criteria. This sometimes leads to different classifi-
cation results between MIC-GANs and human labels. For
example, images can be classified according to the colors or
shapes or semantics. While human labels in CIFAR are pri-

marily based on semantics (object identities), it is normal
that MIC-GANs at times generate images from one mode
that match several ground-truth classes. Nevertheless, we
can still find some interesting similarities among the images
generated from one mode. In addition, MIC-GANs improve
the generation quality in general with lower FID scores
shown in the paper. We also find that Self-Conditioned
GAN suffers from mode collapse in several modes and the
problem gets worse when K is small. StyleGAN2-Ada
is able to generate images with diversities but ours still
achieve better FID scores.

Figure 6 shows the generation results of our method on
the Tiny Imagenet dataset. Without any class supervision,
our algorithm still generates several reasonable conditional
results. For example, line 1, 2, 3, 5, 11, 12 correctly pro-
duce the images of lemon, triumphal arch, beacon, brain
coral, monarch and beach wagon, while several modes gen-
erate the mixtures of classes, like line 4 and 7. Another
interesting observation is that line 9 mostly generates bullet
trains facing the right while line 10 genearates buleet trains
facing the left. Tiny Imagenet is a difficult dataset, so the
generation is less ideal on some modes, but still covers most
of them.
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