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1. SoyAgeing Dataset

The SoyCultivarAgeing subset contains the soybean cul-
tivar leaves of five Reproductive Stages. The five stages are
defined by [6] as R1: beginning bloom; open flower at any
node on the main stem; R3: beginning pod; any pod that is
3/16 inch long and is on one of the four uppermost nodes
of the main stem; R4: full pod; a 3/4 inch pod at one of
the four uppermost nodes on the main stem; RS: beginning
seed; seed is 1/8 inch long in a pod at one of four uppermost
nodes on the main stem; R6: full seed; a pod containing a
green seed that fills the pod capacity is located at one of the
four uppermost main stem nodes.

There are 198 different soybean cultivars in this subset.
Each cultivar contains leaf images from the above 5 repro-
ductive stages. In each reproductive stage, there are 10
leaf images. Thus, each cultivar consists of 5 x 10 = 50
leaf images. The total number of the leaf images is then
198 x 50 = 9, 900.

An overview of the UFG image dataset is shown in Fig.
1.

2. Implementation Details

The baselines are implemented in the Pytorch frame-
work. To keep the aspect ratio of the original object shapes,
the training images are padded to square before being re-
sized to the size of 440 x 440, and then randomly cropped
to the size of 384 x 384. In the inference stage, the images
are directly resized to 384 x 384.

The deep learning baselines are trained for 160 epochs
using SGD with a batch size of 16. The learning rate is
0.001 initially and then decreases by a factor of 10 every
60 epochs. The fine-grained baselines are implemented as
reported in their papers with carefully fine-tuning. Specif-
ically, for Alexnet [10], VGG-16 [13], ResNet-50 [8] and
DCL [3], the batch size is set to 16, the learning rate is
0.001 with a learning rate decay of 10 for each 60 epochs,
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and SGD is used as the optimiser. Fast-MPN-COV [11] is
trained using SGD with a learning rate of 0.0012, a weight
decay of 0.001 and a batch size of 10. For MaskCOV [16],
the batch size is 8 for Cotton80 subset and 16 for the re-
maining subsets, respectively. The learning rate is set to
0.001 with a learning rate decay of 10 for each 60 epochs
and SGD is used as the optimiser. ADL [4] is evaluated
with the drop threshold of 0.9, a learning rate of 0.01 and
a batch size of 32. As ADL has a hyper-parameter (termed
drop rate) that determines the drop rate of image content,
we report two settings of ADL with drop rates of 0.25 and
0.5 respectively for a more comprehensive comparison. For
Cutout [5], the learning rate is set to 0.01 with a batch size of
16. Similar to ADL, Cutout has a hyper-parameter (termed
length) that controls the size of removed region, we there-
fore report the results with the best two settings adopted in
their paper, i.e., length = 8 and 16 respectively. For Hide and
Seek [14], the learning rate is set to 0.001, with a learning
rate decay of 10 for each 60 epochs and SGD as the opti-
miser. The hyper-parameter that controls the possibility of
region removal is set to 0.5, with a training batch size of 16.
For Cutmix [17], we adopt a training batch size of 16 and
a learning rate of 0.01. Following [7], the performances of
the self-supervised methods are evaluated using both linear
evaluation (i.e., only the classifier is optimized) and fine-
tuning (i.e., all the model parameters are fine-tuned). For
SimCLR (fine-tuning) [ 1], the batch size is 32 with a learn-
ing rate of 0.1 which decreases by 10 times at 60, 80 and
100 epoch respectively. For SimCLR (linear), the initial
learning rate is set to 1 and other settings remain the same.
For MoCo v2 (linear) [2], the batch size is set to 16 and the
learning rate is 30, which decreases by 10 times at 60, 80
and 100 epoch respectively. For MoCo v2 (fine-tuning), the
learning rate ratio between the backbone and the classifier
is set to 106 while the other settings remain the same. For
BYOL (linear) [7], the batch size is set to 16 with a learning
rate of 1, which decreases by 10 times at 60, 80 and 100
epoch respectively. For BYOL (fine-tuning), the learning
rate is set to 0.1 and the other settings remain the same.



3. Ultra-Fine-Grained Visual Categorization

Table 1 lists the performance of all the competing meth-
ods on the four subsets of the proposed UFG dataset, i.e.,
SoyLocal, SoyGlobal, Cotton80 and SoyGene subsets. Ta-
ble 2 shows the performance of all the competing methods
on the SoyAgeing subset. We observe that there remains a
large room for performance improvement in the ultra-fine-
grained visual categorization.

4. Fine-Grained Visual Categorization

Recall that the images from small-sample subsets can be
grouped into two categories when the species-level taxo-
nomic system is adopted (as stated in Section 3.3). Follow-
ing other popular fine-grained species classification tasks
[15, 9], we refer to our fine-grained visual categorization as
the identification of the category at a species level, i.e., dif-
ferentiating cotton and soybean. The small-sample subsets
are thus considered as an integrated two-category dataset,
with one category containing 480 cotton leaf images and
the other category covering 12,828 soybean leaf images.

We evaluate the ResNet-50 and DCL on this integrated
two-category dataset for the fine-grained visual categoriza-
tion. The classification accuracies of the two methods both
achieve 100%, confirming the effectiveness of the base-
line methods in the fine-grained visual categorization. This
saturated performance is also in accordance with that ob-
tained in other fine-grained species classification tasks, e.g.,
bird species classification [15] (87.8%), flower species clas-
sification [12] (99.7%), and dog species classification [9]
(92.1%).

In contrast, the performances of the baselines obtained in
the ultra-fine-grained visual categorization are far from sat-
urated. This indicates that the ultra-fine-grained visual cate-
gorization remains an unsolved task for current fine-grained
classification methods. The proposed UFG image dataset
may serve as a new challenge to develop new methods that
scale to the level of ultra-fine-grained visual categorization.
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Figure 1. An overview of the proposed UFG image dataset. Each row shows images from a subset of the UFG image dataset. Each image
represents a unique cultivar (category) in its associated subset.




Table 1. The classification accuracy on the CottonCultivar80 (Cotton.), SoyCultivarLocal (Soy.Loc.), SoyCultivarGene (Soy.Gene), Soy-
CultivarGlobal (Soy.Glo.), SoyAgeing (Soy.Age.) datasets.

Top 1 Accuracy (%)

Method Backbone
Cotton. Soy.Loc. Soy.Gene Soy.Glo. Soy.Age.

Alexnet [10] Alexnet 22.92 19.50 13.12 13.21 44.93
VGG-16 [13] VGG-16 50.83 39.33 63.54 45.17 70.44
ResNet-50 [8] ResNet-50 52.50 38.83 70.21 25.59 67.15
SimCLR (linear) [1] ResNet-50 41.25 29.17 29.62 13.48 46.18
SimCLR (fine-tuning) [1] ResNet-50 51.67 37.33 62.68 42.54 64.73
MoCo v2 (linear) [2] ResNet-50 30.42 27.67 26.58 12.99 38.26
MoCo v2 (fine-tuning) [2] ResNet-50 45.00 32.67 56.49 29.26 59.13
BYOL (linear) [7] ResNet-50 47.92 25.50 35.13 18.44 49.53
BYOL (fine-tuning) [7] ResNet-50 52.92 33.17 60.65 41.35 64.75
Cutout (16) [5] ResNet-50 55.83 31.67 62.46 44.65 63.68
Cutout (8) [5] ResNet-50 54.58 37.67 61.12 47.06 65.70
Hide and Seek [14] ResNet-50 48.33 28.00 61.27 23.74 60.48
ADL (0.25) [4] ResNet-50 40.83 28.00 52.18 29.50 51.56
ADL (0.5) [4] ResNet-50 43.75 34.67 55.19 39.35 61.70
Cutmix [17] ResNet-50 45.00 26.33 66.39 30.31 62.68
fast-MPN-COV [11] ResNet-50 50.00 38.17 45.26 11.39 63.66
DCL [3] ResNet-50 53.75 45.33 71.41 42.21 73.19

MaskCOV [16] ResNet-50 58.75 46.17 73.57 50.28 75.86




Table 2. The classification accuracy of the baselines on the five stages of the SoyAgeing subset. “Avg” denotes the average classification
accuracy of the five subsets.

Top 1 Accuracy (%)

Method Backbone

R1 R3 R4 R5 R6 Avg
Alexnet [10] Alexnet 49.90 44.65 45.15 47.47 37.47 44.93
VGG-16[13] VGG-16 72.32 72.53 74.95 71.11 61.31 70.44
ResNet-50 [§] ResNet-50 70.00 64.24 74.04 72.63 54.85 67.15
SimCLR (linear) [1] ResNet-50 53.64 45.66 45.35 50.40 35.86 46.18
SimCLR (fine-tuning) [1] ResNet-50 70.00 66.57 64.24 68.38 54.44 64.73
MoCo v2 (linear) [2] ResNet-50 42.93 38.59 38.99 38.99 31.82 38.26
MoCo v2 (fine-tuning) [2] ResNet-50 62.73 56.16 61.31 65.96 49.49 59.13
BYOL (linear) [7] ResNet-50 55.35 48.38 50.40 49.60 43.94 49.53
BYOL (fine-tuning) [7] ResNet-50 71.11 66.16 65.76 64.65 56.06 64.75
Cutout (16) [5] ResNet-50 70.20 61.92 62.32 69.70 54.24 63.68
Cutout (8) [5] ResNet-50 66.87 64.04 67.78 73.43 56.36 65.70
Hide and Seek [14] ResNet-50 64.04 58.99 61.31 64.75 53.33 60.48
ADL (0.25) [4] ResNet-50 53.54 54.34 55.15 52.83 41.92 51.56
ADL (0.5) [4] ResNet-50 66.67 58.89 64.75 68.48 49.70 61.70
Cutmix [17] ResNet-50 65.56 59.19 64.24 68.79 53.64 62.28
fast-MPN-COV [11] ResNet-50 67.68 64.55 66.87 68.49 50.71 63.66
DCL [3] ResNet-50 76.87 73.84 76.16 76.16 62.93 73.19

MaskCOV [16] ResNet-50 79.80 74.65 79.60 78.28 66.97 75.86




