
Dual Contrastive Loss and Attention for GANs
(Supplementary Material)

Ning Yu1,2 Guilin Liu3 Aysegul Dundar3,4

Andrew Tao3 Bryan Catanzaro3 Larry Davis1 Mario Fritz5

1University of Maryland 2Max Planck Institute for Informatics 3NVIDIA
4Bilkent University 5CISPA Helmholtz Center for Information Security

{ningyu,lsdavis}@umd.edu
{guilinl,adundar,atao,bcatanzaro}@nvidia.com

fritz@cispa.saarland

1. Different GAN backbones for dual con-
trastive loss

In Table 1 we show the consistent and significant ad-
vantages of our dual contrastive loss on two other GAN
backbones: SNGAN [10] and StyleGAN [6].

2. Self-attention at different generator resolu-
tions

It is empirically acknowledged that the optimal resolution
to replace convolution with self-attention in the generator is
specific to dataset and image resolution [15]. For the state-
of-the-art attention module SAN [16] in Table 3 in the main
paper, we find that it achieves the optimal performance at
32×32 generator resolution consistently over all the limited-
scale 128×128 datasets, and therefore we report these FIDs.

For the large-scale datasets with varying resolutions in
Table 6 in the main paper, we conduct an analysis study on
their optimal resolutions as shown in Table 2.

We find there is a specific optimal resolution for each
dataset, and the FID turns monotonically deteriorated when
introducing self-attention one resolution up or down. We
reason that each dataset has its own spatial scale and com-
plexity. If longer-range dependency or consistency counts
more than local details in one dataset, e.g., CLEVR, it is
more favorable to use self-attention in an earlier layer, thus
at a lower resolution. We stick to the optimal resolution and
report the corresponding FID for each dataset in Table 6 in
the main paper.

3. Different reference-attention configurations

Eq. 8 in the main paper provides the flexibility of how
to cooperate between reference and primary images. We
empirically explore the other configurations of sources to the

Method FFHQ Bedroom Church Horse CLEVR

SNGAN 11.28 11.14 7.37 13.87 29.19
+ Contr 8.98 10.79 6.51 13.59 18.23

StyleGAN 6.83 5.30 5.12 7.27 12.43
+ Contr 6.42 4.76 4.48 6.26 8.96

Table 1. Comparisons in FID on different GAN backbones.

Resolution FFHQ Bedroom Church Horse CLEVR

82 6.08 4.43 5.10 4.24 10.44
162 5.81 4.21 5.24 3.58 8.96
322 5.69 3.48 4.38 3.75 9.04
642 5.13 3.69 4.57 3.94 12.48
1282 5.75 6.69 4.82 6.82 18.40

Table 2. FID w.r.t. the resolution at which we replace convolution
with SAN [16] in the generator.

Configuration CelebA Animal Face Bedroom Church

Eq. 1 10.39 65.16 20.22 17.85
Eq. 2 10.95 32.33 11.05 8.33

Eq. 8 in main 7.48 31.08 8.32 7.86

Table 3. FID w.r.t. different reference-attention configurations in
the discriminator. For computationally efficient comparisons, we
use the 30k subset of each dataset at 128×128 resolution.

key, query, and value components in the reference-attention.
The following two equations, Eq. 1 and Eq. 2, correspond to
the two configuration variants we compare to.

Oref .
= attn (K(Tpri),Q(Tref),V(Tref)) +Tpri (1)

Oref .
= attn (K(Tpri),Q(Tref),V(Tpri)) +Tpri (2)



CelebA Animal Face Bedroom Church
Data size StyleGAN2 + ref attn StyleGAN2 + ref attn StyleGAN2 + ref attn StyleGAN2 + ref attn

1K 55.71 43.19 181.26 123.08 230.40 79.81 107.31 43.05
5K 23.48 18.48 89.88 61.17 57.68 19.64 29.30 17.85
10K 14.73 12.72 61.36 45.49 40.70 12.29 17.94 12.13
30K 9.84 7.48 36.55 31.08 19.33 8.32 11.02 7.86
50K 6.59 7.09 28.92 28.43 14.01 7.15 8.88 7.09

100K 5.61 6.86 22.85 28.37 9.42 6.89 7.32 7.08

Table 4. Comparisons in FID between StyleGAN2 config E baseline and that with our reference-attention in the discriminator. Our method
consistently improves the baseline when dataset size varies between 1k and 30k images. For computationally efficient comparisons, we use
each dataset at 128×128 resolution. See Fig. 6 in the main paper for the corresponding plots.

FFHQ Bedroom Church Horse CLEVR
Method Loss FID PPL P R Sep FID PPL P R FID PPL P R FID PPL P R FID PPL P R

BigGAN [1] Adv 11.4 - - - - - - - - - - - - - - - - - - - -
U-Net GAN [12] Adv 7.48 32 0.68 0.19 2.00 17.6 504 0.48 0.03 11.7 318 0.62 0.07 20.2 296 0.57 0.13 33.3 202 0.04 0.08
StyleGAN2 [7] Adv 4.86 47 0.69 0.42 5.08 4.01 976 0.59 0.32 4.54 511 0.57 0.42 3.91 637 0.63 0.40 9.62 582 0.46 0.56

StyleGAN2 w/ attn Adv 5.13 54 0.69 0.41 4.18 3.48 1384 0.59 0.36 4.38 611 0.59 0.41 3.59 636 0.64 0.39 8.96 67 0.47 0.63
StyleGAN2 Contr 3.98 50 0.71 0.44 3.76 3.86 1054 0.60 0.31 3.73 619 0.60 0.40 3.70 740 0.64 0.39 6.06 816 0.57 0.65
StyleGAN2 w/ attn Contr 4.63 65 0.70 0.41 3.60 3.31 1830 0.59 0.37 3.39 1239 0.60 0.45 2.97 1367 0.64 0.43 5.05 106 0.58 0.70

Table 5. Comparisons to the state-of-the-art GANs in various metrics on the large-scale datasets. We highlight the best in bold and second
best with underline. “w/ attn” indicates using the self-attention in the generator. “Contr” indicates using our dual contrastive loss instead of
conventional GAN loss.

Resolution CelebA Animal Face Bedroom Church

82 7.48 31.08 8.32 7.86
162 31.36 118.82 11.05 11.42
322 55.07 195.82 146.85 61.83

Table 6. FID w.r.t. the resolution at which we replace convolution
with reference-attention in the discriminator. For computationally
efficient comparisons, we use the 30k subset of each dataset at
128×128 resolution.

From Table 3, we validate that Eq. 8 in the main paper is
the best setting. We reason that the value embedding is rela-
tively independent of the key and query embeddings. Hence
we should encode value from one source, and key and query
from the other source. Also, because the value and residual
shortcut contribute more directly to the discriminator output,
we should feed them with the primary image, and feed the
key and query with the reference image to formulate the
spatially adaptive kernel.

4. Reference-attention at different discrimina-
tor resolutions

In Table 6, we analyze the relationship between genera-
tion quality and the resolution to replace convolution with
reference-attention in the discriminator. We stop investiga-
tion to higher resolutions because the training turns easily
diverging. We conclude introducing reference-attention at
the lowest possible resolution is most beneficial. We rea-

son that the deepest features are the most representative for
cooperating between reference and primary images. Also be-
cause the primary and reference images are not pre-aligned,
the lowest resolution covers the largest receptive field and
therefore leads to the largest overlap between the two images
that should be corresponded. We stick to the 8×8 resolution
for all the experiments involving reference-attention.

5. FID w.r.t. data size for reference-attention

We report in Table 4 the detailed values for Fig. 6 in the
main paper. Our method consistently improves the baseline
when dataset size varies between 1k and 30k images.

6. Comparisons to the state of the art in various
metrics

We extend Table 6 in the main paper with additional
evaluation metrics for GANs, which are proposed and used
in StyleGAN [6] and/or StyleGAN2 [7]: Perceptual Path
Length (PPL), Precision (P), Recall (R), and Separability
(Sep). See Table 5.

Consistent with FID rankings, our attention modules and
dual contrastive loss also improve from StyleGAN2 baseline
for Precision, Recall, and Separability in most cases. It is
worth noting that the rankings of PPL are negatively cor-
related to all the other metrics, which disqualifies it as an
effective evaluation metric in our experiments. E.g., U-Net
GAN has the best PPL in most cases but in fact it contradicts
against its worst FID and worst visual quality in Fig. 1, 2, 3,



Method Loss CelebA Animal Face Bedroom Church

StyleGAN2 [7] Adv 9.84 36.55 19.33 11.02
StyleGAN2 w/ self-attn-G Adv 8.60 32.72 16.36 9.62
StyleGAN2 w/ self-attn-G Contr 7.55 25.83 10.99 8.12
StyleGAN2 w/ self-attn-G ref-attn-D Adv 7.48 31.08 8.32 7.86
StyleGAN2 w/ self-attn-G ref-attn-D Contr 6.00 25.03 12.84 8.75

Table 7. Comparisons in FID to StyleGAN2 config E baseline on the limited-scale datasets. Our configurations consistently improve the
baseline, the relative improvements of which are even more significant than those on the large-scale datasets. We use the 30k subset of each
dataset at 128×128 resolution.

4, and 5.

7. Comparisons on the limited-scale datasets
Besides comparisons on the large-scale datasets, we also

compare to StyleGAN2 [7] baseline on the limited-scale
datasets in Table 7. We use the 30k subset of each dataset at
128×128 resolution. We find:

(1) Comparing across the first, second, and third rows,
self-attention generator, dual contrastive loss, and their syn-
ergy significantly and consistently improve on all the limited-
scale datasets, more than what they improve on the large-
scale datasets: from 18.1% to 23.3% on CelebA [9] and Ani-
mal Face [8], from 17.5% to 43.2% on LSUN Bedroom [14],
and from 25.2% to 26.4% on LSUN Church [14]. It indicates
the limited-scale setting is more challenging and leaves more
space for our improvements.

(2) Comparing between the first and fourth rows, the
reference-attention discriminator improves significantly and
consistently on all the datasets up to 57.0% on LSUN Bed-
room. We reason that the arbitrary pair-up between reference
and primary images results in a beneficial effect similar in
spirit to data augmentation, and consequently generalizes
the discriminator representation and mitigates its overfitting.

(3) However, according to the fifth row, reference-
attention discriminator is sometimes not compatible with
contrastive learning because they may together overly aug-
ment the classification task: contrastive learning for one pair
of primary and reference input against a batch of other pairs
makes adversarial training unstable. This observation differs
from that of pairwise contrastive learning in the unsuper-
vised learning scenario [4, 13, 2, 3] or GAN applications
with reconstructive regularization [11].

Even though in this paper our main scope is GANs on
large-scale datasets, we believe these findings to be very in-
teresting for researchers to design their networks for limited-
scale datasets.

8. Uncurated generated samples
For comparisons to the state of the art, we show more

uncurated generated samples in Figure 1, 2, 3, 4 and 5. Our
generation significantly outperforms the baselines U-Net

GAN [12] and StyleGAN2 [7] in terms of quality, long-
range dependencies, and spatial consistency.

9. Self-attention maps
For self-attention maps in the generator, we show more

results in Figure 6, 7, 8, and 9. The attention maps strongly
align to the semantic layout and structures of the generated
images, which enable long-range dependencies across ob-
jects.

References
[1] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large

scale gan training for high fidelity natural image synthesis. In
ICLR, 2018. 2

[2] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geof-
frey Hinton. A simple framework for contrastive learning of
visual representations. In ICML, 2020. 3

[3] Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad
Norouzi, and Geoffrey E Hinton. Big self-supervised models
are strong semi-supervised learners. In NeurIPS, 2020. 3

[4] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimension-
ality reduction by learning an invariant mapping. In CVPR,
2006. 3

[5] Justin Johnson, Bharath Hariharan, Laurens van der Maaten,
Li Fei-Fei, C Lawrence Zitnick, and Ross Girshick. Clevr: A
diagnostic dataset for compositional language and elementary
visual reasoning. In CVPR, 2017. 8, 10

[6] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks. In
CVPR, 2019. 1, 2, 4

[7] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,
Jaakko Lehtinen, and Timo Aila. Analyzing and improving
the image quality of stylegan. In CVPR, 2020. 2, 3

[8] Ming-Yu Liu, Xun Huang, Arun Mallya, Tero Karras, Timo
Aila, Jaakko Lehtinen, and Jan Kautz. Few-shot unsupervised
image-to-image translation. In ICCV, 2019. 3

[9] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang.
Deep learning face attributes in the wild. In ICCV, 2015. 3

[10] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and
Yuichi Yoshida. Spectral normalization for generative adver-
sarial networks. In ICLR, 2018. 1

[11] Taesung Park, Alexei A Efros, Richard Zhang, and Jun-Yan
Zhu. Contrastive learning for unpaired image-to-image trans-
lation. In ECCV, 2020. 3



Figure 1. Uncurated generated samples at 256×256 for FFHQ dataset [6]. To align the comparisons, we use the same real query images for
pre-trained generators to reconstruct. Our generation significantly outperforms the baselines in terms of quality, long-range dependencies,
and spatial consistency.
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Figure 2. Uncurated generated samples at 256×256 for LSUN Bedroom dataset [14]. To align the comparisons, we use the same real query
images for pre-trained generators to reconstruct. Our generation significantly outperforms the baselines in terms of quality, long-range
dependencies, and spatial consistency.



Figure 3. Uncurated generated samples at 256×256 for LSUN Church dataset [14]. To align the comparisons, we use the same real query
images for pre-trained generators to reconstruct. Our generation significantly outperforms the baselines in terms of quality, long-range
dependencies, and spatial consistency.



Figure 4. Uncurated generated samples at 256×256 for LSUN Horse dataset [14]. To align the comparisons, we use the same real query
images for pre-trained generators to reconstruct. Our generation significantly outperforms the baselines in terms of quality, long-range
dependencies, and spatial consistency.



Figure 5. Uncurated generated samples at 256×256 for CLEVR dataset [5]. To align the comparisons, we use the same real query images
for pre-trained generators to reconstruct. Our generation significantly outperforms the baselines in terms of quality, long-range dependencies,
and spatial consistency.



Figure 6. StyleGAN2 + SAN generated LSUN Bedroom [14] samples at 256×256 and their self-attention maps at 32×32 in the generator
for the corresponding dot positions. Considering there is an attention weight kernel w ∈ Rs×s×c for each position, we visualize the norm
for each spatial position of w. The attention maps strongly align to the semantic layout and structures of the generated images, which enable
long-range dependencies across objects.

Figure 7. StyleGAN2 + SAN generated LSUN Church [14] samples at 256×256 and their self-attention maps at 32×32 in the generator for
the corresponding dot positions. Considering there is an attention weight kernel w ∈ Rs×s×c for each position, we visualize the norm for
each spatial position of w. The attention maps strongly align to the semantic layout and structures of the generated images, which enable
long-range dependencies across objects.



Figure 8. StyleGAN2 + SAN generated LSUN Horse [14] samples at 256×256 and their self-attention maps at 16×16 in the generator for
the corresponding dot positions. Considering there is an attention weight kernel w ∈ Rs×s×c for each position, we visualize the norm for
each spatial position of w. The attention maps strongly align to the semantic layout and structures of the generated images, which enable
long-range dependencies across objects.

Figure 9. StyleGAN2 + SAN generated CLEVR [5] samples at 256×256 and their self-attention maps at 16×16 in the generator for the
corresponding dot positions. Considering there is an attention weight kernel w ∈ Rs×s×c for each position, we visualize the norm for
each spatial position of w. The attention maps strongly align to the semantic layout and structures of the generated images, which enable
long-range dependencies across objects.


