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This document is supplemental to the paper entitled Hi-
erarchical Disentangled Representation Learning for Out-
door Illumination Estimation and Editing. In the following
sections, we provide architecture and training details for our
approach. More qualitative results are also provided. All
the images used in this file are from our test sets and the
real world. Our networks never saw these images in the
training stage.

1. Architecture and training details
1.1. Details of HDSky architecture

Our HDSky utilizes different networks to disentangle the
sunny panoramas and cloudy panoramas into different light-
ing factors. The disentangled factors of the illumination la-
tent space and the corresponding dimension are shown in
Fig. 1.

1.1.1 Networks for sunny panoramas

As shown in the left part of Fig. 2 in the main paper, three
autoencoders are used to disentangle a sunny panorama into
several factors.

In AE1, two encoders Esky and Esun both consist of 8
convolutional layers and a global average pooling layer [6].
The difference between the two encoders is that Esky out-
puts a sky vector zsky , while Esun outputs a sun vector
zsun. Dsky is composed of 4 nearest neighbor upsampling
layers with the sigmoid function as the last layer. The resid-
ual block is applied after each upsampling layer. Dsun first
concatenates the single-channel sun position map Ppos with
the feature map filled by the sun vector zsun. Then, the ob-
tained intermediate feature is mapped to the sun panorama
Psun with 3 convolutional layers and a residual block. To
obtainPpos, we set the pixel values of a small rectangle (7×
10) around the ground-truth sun position zpos with 1. Both
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Figure 1. The hierarchically disentangled latent vectors and the
corresponding dimension.

zpos and the rectangle are mapped to a 32 × 128 panorama
Ppos with latitude and longitude coordinates. Here, zpos
consists of the sun elevation e ∈ [−π/4, π/4] and azimuth
a ∈ [−π, π]. Then the coordinate of zpos in Ppos is defined
as y = 32×((π/4−e)/(π/2));x = 128×((π+a)/(2×π)).
AE1 is trained for 1160 epochs with a learning rate of
0.001, and then trained for 42 epochs with the learning rate
of 0.00001.

The detail of AE2 is shown in the left part of Fig. 2.
F sun
int and Fres, both consisting of two fully connected lay-

ers, compress a sun vector into a 3-dimensional sun inten-
sity vector zsunint and a 10-dimensional residual vector zres,
respectively. The subnetwork Dsun

shp utilizes two upsam-
pling layers and a softmax layer to generate the sun shape
Ssun with 7×10 resolution. Ssun is then concatenated with
zsunint and fed into the encoder E2 which contains a con-
volution layer and a fully connected layer to generate the
intermediate feature. Subsequently, the obtained feature is
concatenated with zres and fed into a fully connected layer
F to achieve the reconstructed sun vector z′sun.

Once AE1 is trained, we train AE2 with the following
objective function for 600 epochs:

LAE2 = Lsun−recon + Lint + Lshp + Lres. (1)

Here, Lsun−recon is the sum of the L1 norm between (1)
the input sun vector zsun and the reconstructed sun vector
z′sun, and (2) the sun panorama Psun and the sun panorama
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Figure 2. The details of AE2 and AE3 for disentanglement.

generated by z′sun. We also design the intensity loss Lint

to measure the similarity between the sun intensity vector
zsunint and the one which is obtained by computing the sum
of each channel of the sun area (the above 7× 10 rectangle)
in the sun panorama Psun.

The sun shape lossLshp utilizes the binary cross-entropy
loss to measure the similarity between the sun shape Ssun

and the sun shape of the sun panorama Psun, which is ob-
tained by applying a softmax operation on the sun area of
Psun.

To make the residual vector zres not learn the sun inten-
sity information, we design the residual loss Lres. Without
supervision for zres, we feed two versions of zres through
AE2, one after the other: the original zres, and the second
one z′res obtained by applying random noise on zres, similar
to SkyNet [2]. To enforce the sun area in the sun panoramas
which are generated by the above two versions of zres as
close as possible, we utilize Lres to minimize the L1 norm
between the two versions of the sun area.

With the sky vector zsky as input, the third autoencoder
AE3 utilizes F sky

int which has two fully connected layers
to generate the sky intensity vector zskyint . The subnetwork
Dsky

shp utilizes 4 upsampling layers and a softmax layer to
generate the sky shape Ssky with 32×128 resolution. Then,
Ssky is concatenated with zskyint and fed into the network E3

to generate the reconstructed sky vector z′sky . E3 is com-
posed of 8 convolutional layers and a global average pool-
ing layer [6]. The loss function used to train AE3 is simi-
lar to AE2, but does not include the residual loss. AE3 is
trained for 350 epochs.

1.1.2 Networks for cloudy panoramas

The autoencoder used to compress the cloudy panorama has
an identical architecture as the sky branch of AE1. Nev-
ertheless, the dimension of the obtained sky vector is 63,
which is slightly different from the sky vector of the sunny

panorama. With the reconstruction loss (L1 loss), the au-
toencoder is trained for 300 epochs with a learning rate of
0.001, and then trained for 50 epochs with a learning rate of
0.00001. 3650 HDR cloudy panoramas are used to train the
autoencoder. Furthermore, we employ another autoencoder
that has a similar architecture asAE3 to disentangle the sky
intensity from the 63-dimensional sky vector. The autoen-
coder is trained for 50 epochs with the same loss function
as AE3. 3650 63-dimensional sky vectors are used to train
the autoencoder.

1.2. Details of HDSky predictor architecture

Our HDSky predictor predicts all-weather sky informa-
tion from a single outdoor image with different neural net-
works. The classification networkEcla, consisting of 5 con-
volutional layers and a fully connected layer, outputs a sin-
gle 0/1 scalar value indicating the cloudy/sunny score. Ecla

is trained on 4,900 sunny images and 4,900 cloudy images
extracted from the SUN360 dataset [7]. Convergence is ob-
tained after 47 epochs with the learning rate of 0.001. On
the test set containing 868 sunny images and 861 cloudy im-
ages, the accuracy of Ecla to correctly classify the weather
category is 88.5%.

Our sun position prediction network Epos utilizes
the pre-trained DenseNet-161 [4] architecture, similar to
SkyNet [2]. Predicted withEpos, the elevation error of 9852
sunny images (93.7%) is less than 22.5◦, and the azimuth
error of 7750 sunny images (73.7%) is less than 22.5◦ on
10,514 sunny test images.

As shown in the top-right corner of Fig. 2 in the main
paper, two networks Esky2 and Esun2 are employed to es-
timate a sky vector and a sun vector of a single sunny im-
age. The two networks both consist of 6 convolutional lay-
ers with a global average pooling layer [6] as the last layer.
The residual block is applied after each convolutional layer.
To estimate a sky vector from a cloudy image, we leverage
a single network which is made up of 6 convolutional layers
and a global average pooling layer [6].

1.3. Details of data processing

To train AE1 in HDSky, two large datasets of HDR
panoramas are employed. First, the HDR panoramas in
the Laval sky dataset [5] are resized down to a resolution
of 32 × 128 with the same approach as SkyNet [2], en-
suring that the sky hemisphere remains constant. We then
obtain the other dataset SUN360-HDR [2] by converting
each LDR panorama of the SUN360 dataset [7] to HDR
with the same approach as [2]. The HDR panoramas in the
SUN360-HDR dataset are resized down to 32×128 in RGB
of the up hemisphere. Then, we mask the HDR panora-
mas in the SUN360-HDR dataset with the sky masks which
are obtained with the sky segmentation approach of [3]. In
addition, we randomly apply the sky masks to the train-
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Figure 3. Reconstruction quality comparison between our HDSky and SkyNet [2]. The ground-truth panoramas are from the SUN360-HDR
dataset [2].

ing panoramas from the Laval sky dataset [5] with a 50%
chance. AE1 will recover the original, unoccluded sky ap-
pearance. Before fed into AE1, all HDR panoramas are
compressed by the transformation equation:

τ (I) = sign(I)
log(1 + abs(I)µ)

log(1 + µ)
, (2)

where µ is set to 16 to control the amount of compres-
sion [1].

Once HDSky is trained, we run it on all panoramas in
the SUN360-HDR dataset [2] to generate the corresponding
disentangled vectors. These vectors together with the im-
ages extracted from the SUN360 dataset [7] are then used

as training examples for HDSky predictor. The complete
pipeline is shown in Fig. 2 in our main paper.

2. More qualitative results of HDSky
In this section, more visual examples from the Laval sky

dataset [5] and the SUN360-HDR [2] dataset are shown in
Fig. 3 to compare the reconstruction quality between our
HDSky and SkyNet [2]. Compared with SkyNet [2], our
HDSky achieves higher reconstruction quality with more
accurate sun intensity and sky details. The reason is that
our HDSky disentangles the outdoor illumination into sev-
eral independent factors. The mutual interference between
the sky and sun is avoided.



0.012 0.054 0.524

0.022 0.145 0.956

0.018 0.028 0.988

0.021 0.207 0.363

0.077 0.567 0.758

0.034 0.551 0.559

0.037 0.632 0.651

GT Ours SkyNet [2] [3]
Figure 4. Visual comparison of outdoor illumination prediction between different methods. Our estimated lighting is more accurate than
SkyNet [2] and the method of Hold-Geoffroy et al. [3] under different weather conditions.

3. More qualitative results of HDSky predictor

Fig. 4 shows more qualitative comparison of outdoor il-
lumination prediction between different methods. Overall,

our HDSky predictor significantly outperforms its competi-
tors [2, 3] under different weather conditions.
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Figure 5. Varying a single lighting factor. For each subfigure, the panoramas in the top row and leftmost column (with red boxes) are
reconstructed panoramas, which provide specific factors to synthesize novel panoramas in the central area. The reconstructed panoramas in
the first 2 subfigures are from the Laval sky dataset [5], and the panoramas in the last subfigure come from the SUN360-HDR dataset [2].

4. More qualitative results of HDSky editor

We provide more visual results to show how well HD-
Sky disentangles each factor and generates realistic HDR
panoramas. As shown in Fig. 5, we can change the sky,
the sun position and the sun of a reconstructed panorama by
modifying (a) zsky , (b) zpos and (c) zsun to synthesize novel
panoramas. Fig. 5 also shows that we can change the illumi-
nation factor of a panorama by changing the specific latent
vector without affecting any other illumination factors due
to our hierarchical disentangled sky model.

With explicit parameters, we can directly edit the pre-

dicted outdoor illumination. Fig. 6 shows more sunny ex-
amples of intuitive edits of our HDSky editor. As seen,
changing a specific lighting vector can modify the corre-
sponding lighting factor of the predicted lighting panorama
without affecting any other lighting factors. For exam-
ple, by changing the sky intensity vector of the predicted
panorama in the first subfigure, we can smoothly edit the
sky intensity of the predicted sunny panorama and obtain
the rendered images with smooth transitions of background
intensity. In addition, the intensity of the sun roughly in-
creases as the elevation angle increases, and other sky in-
formation is not affected when we edit the sun elevation.
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Figure 6. More sunny examples of intuitive edits of our HDSky editor. For each subfigure, the rendered image in the red box is generated
with the predicted panorama of the given image in the top-left corner. Smooth transitions can be generated by changing the sun intensity,
the sun azimuth, the sun elevation and the sky intensity.



Figure 7. Intuitive edits of the sky intensity of the predicted cloudy panoramas.

For the predicted cloudy panoramas, we can edit the sky
intensity with explicit parameters. Fig. 7 shows some visual
examples of intuitive edits. The results indicate that chang-
ing the sky intensity vector produces smooth transitions of

the sky intensity of the predicted cloudy panoramas.



Figure 8. Application of virtual object insertion of our method under different weather condition. The horse, dog, bunny and dragon are
virtual objects we insert.

5. Virtual object insertion

We further show the benefit of our HDSky in the ap-
plication of virtual object insertion in Fig. 8. The results
reveal that our HDSky generates coherent outdoor lighting
and provides plausible shadings and shadows under differ-
ent weather conditions.
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