
Supplementary Document for:
PlenOctrees for Real-time Rendering of Neural Radiance Fields

Alex Yu1 Ruilong Li1,2 Matthew Tancik1

Hao Li1,3 Ren Ng1 Angjoo Kanazawa1

1UC Berkeley 2USC Institute for Creative Technologies 3Pinscreen

In this supplementary document, we provide some addi-
tional results including more qualitative results and com-
parisons; detailed per-scene breakdown quantitative re-
sults; and an ablation study on different choices of spherical
basis functions. Moreover, we also provide some technical
details including a brief introduction of the spherical basis
functions; the analytic derivatives of ORF rendering; ORF
compression technology we used for in-browser experience;
NeRF-SH training details and ORF optimization details.

1. Additional Results
1.1. Detailed comparisons

Here we provide further qualitative comparisons with
baselines: SRN [10], Neural Volumes [7], NSVF [6] in Fig-
ure 1. We show more qualitative results of our method in
Figure 2 and Figure 3. We also report a per-scene break-
down of the quantitative metrics against all approaches in
Table 3, 4, 5, 6.

1.2. Spherical Basis Function Ablation

Here we provide ablation studies on the choice of spher-
ical basis functions. We first ablate the effect on the number
of spherical harmonics basis, then we explore the use of
a learnable spherical basis functions. All experiments are
conducted on NeRF-synthetic dataset and we report the av-
erage metric directly after training NeRF with spherical ba-
sis functions and after converting it to ORF with fine-tuning.

Number of SH basis functions First, we ablate the num-
ber of basis functions used for spherical harmonics. Aver-
age metrics across the NeRF-synthetic dataset are reported
both for the modified NeRF model and the corresponding
ORF. We found that switching between `max = 3 (SH-16)
and 4 (SH-25) makes very little difference in terms of met-
rics or visual quality.

Spherical Gaussians Furthermore, we also experimented
with spherical Gaussians (SGs) [2], which is another form

of spherical basis functions similar to spherical harmon-
ics, but with learnable Gaussian kernels. Please see §2.1
for a brief introduction of SHs and SGs. SG-25 denotes
our model using 25 SG components instead of SH, all with
learnable lobe axis p and bandwidth λ. While this model
has marginally better PSNR, the advantage disappears fol-
lowing ORF conversion and fine-tuning.

NeRF-SH/SG Converted PlenOctree

Basis PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ GB ↓ FPS↑
SH-9 31.44 0.951 0.065 31.45 0.956 0.056 1.00 262
SH-16 31.57 0.952 0.063 31.71 0.958 0.053 1.93 168
SH-25 31.56 0.951 0.063 31.69 0.958 0.052 2.68 128
SG-25 31.74 0.953 0.062 31.63 0.958 0.052 2.26 151

Table 1: Spherical Basis Function Ablation. We experiment with
various versions of spherical basis functions, including SH-16, SH-
25 and SG-25.

1.3. Clarification on Table 1.

In the main paper Table 1, we report our quantitative re-
sults comparing to various baselines on the NeRF-synthetic
test scenes. A few baseline numbers were reported incor-
rectly/inappropriately, which we clarify and correct here.
Table 2 shows the corrected version of Table 1 in the main
paper, with all corrected number marked as red. Note this
correction does not affect our claims or conclusions in the
main paper. The details of the errata/clarifications are be-
low:

• Neural Volumes. The PSNR, SSIM, LPIPS numbers
we reported are taken from NeRF [9] paper Table 1.
However, we mistakenly referred the numbers from the
“Diffuse Synthetic 360°” section instead of the “Real-
istic Synthetic 36o°”. section. This is updated.

• SRN SSIM. The PSNR, SSIM, LPIPS numbers we re-
ported in Table 1 were taken from a excel sheet shared
by the NSVF [6] authors. When we further examined
these numbers with what’s reported in the NeRF paper,
we found conflicts on the SSIM score for SRN. We de-

1

Ground Truth SRN Neural Volumes NSVF NeRF NeRF-SH (ours) ORF (ours)

Figure 1: Qualitative comparisons on NeRF-synthetic.

Synthetic NeRF Dataset best second-best

PSNR ↑ SSIM ↑ LPIPS ↓ FPS ↑
NeRF (original) 31.01 0.947 0.081 0.023
NeRF 31.69 0.953 0.068 0.045
SRN 22.26 0.846 0.170 0.909
Neural Volumes 26.05 0.893 0.160 3.330
NSVF 31.75 0.953 0.047 0.815
AutoInt (8 sections) 25.55 0.911 0.170 0.380

NeRF-SH 31.57 0.952 0.063 0.051
ORF from NeRF-SH 31.02 0.951 0.066 167.68
ORF after fine-tuning 31.71 0.958 0.053 167.68

Table 2: Corrected Table 1. in the main paper. Corrected num-
bers are marked as red

cided to follow the number reported on the NeRF paper
for this score.

• NSVF FPS. The FPS we reported in the main paper
for NSVF is calculated by first averaging the run-time
then calculating its reciprocal. However our FPS is cal-
culated by directly averaging all per-scene FPS. Thus
we update the NSVF FPS with the way we compute
our FPS in order for this number to be comparable.

2. Technical Details

2.1. Spherical Basis Functions: SH and SG

In the main paper, we used the SH functions without
defining their exact form. Here, we provide a brief technical
discussion of both spherical harmonics (SH) and spherical
Gaussians (SG) for completeness.

Spherical Harmonics. The Spherical Harmonics (SH)
form a complete basis of functions S2 → C. For ` ∈ N∪{0}
andm ∈ {−`, . . . , `}, the SH function of degree ` and order

m is defined as:

Y m` (θ, φ) =

√
2`+ 1

4π

(`−m)!

(`+m)!
Pm` (cos θ)eimφ (1)

where Pm` (cosθ)eimφ are the associated Legendre polyno-
mials. A real basis of SH Y m` : S2 7→ R can be defined in
terms of its complex analogue Y m` : S2 7→ C by setting

Y m` (θ, φ) =

√
2(−1)m Im[Y

|m|
`] if m < 0

Y 0
` if m = 0√
2(−1)mRe[Y m`] if m > 0

(2)

Any real spherical function L : S2 → R may then be
expressed in the SH basis:

L(d) = L(θ, φ) =
∞∑
`=0

∑̀
m=−`

km` Y
m
` (θ, φ) (3)

Spherical Gaussians. Spherical Gaussians (SGs), also
known as the von Mises-Fisher distribution [2], is another
form of spherical basis functions that have been widely
adopted to approximate spherical functions. Unlike SHs,
SGs are a learnable basis. A normalized SG is defined as:

G(d;p, λ) = eλ(d·p−1) (4)

Where p ∈ R2 is the lobe axis, and λ ∈ R is the band-
width (sharpness) of the Gaussian kernel. Due to the vary-
ing bandwidths supported by SGs, they are suitable for rep-
resenting all-frequency signals such as lighting [12, 11, 5].
A spherical function represented using n SGs is formulated
as:

L(d) ≈
n∑
`=0

k`G`(d;p, λ) (5)

Where k` ∈ R3 is the RGB coefficients for each SG.

Chair Drums Ficus Hotdog Lego Ship Mic Materials

Figure 2: More qualitative results of ORF on NeRF-synthetic.

TruckCaterpillar Ignatius Barn Family

Figure 3: More qualitative results of ORF on Tanks&Temples.

2.2. ORF Compression for In-browser Experience

The uncompressed ORF file would be rather time-
consuming for users to download for in-browser render-
ing. Thus, to minimize the size of ORF for viewing in the
browser, we use SH-9 instead of SH-16 or SH-25 and apply
a looser bounding box, which reduces the number of occu-
pied voxels. On top of this, we compress the ORF directly
in the following ways:

1. We quantize the SH coefficients in the tree using the
popular median-cut algorithm [3]. More specifically,
the σ values are kept as is; for each SH basis func-
tion, we quantize the RGB coefficients km` ∈ R3 into
216 colors. Afterwards, separately for each SH basis
function, we store a 216 × 3 codebook (as float16)
along with pointers from each tree leaf to a position in

the codebook (as int16).

2. We compress the entire tree, including pointers, using
the standard DEFLATE algorithm from ZLIB [8].

This process reduces the file size by as much as 20-30
times. The tree is fully decompressed before it is displayed
in the web renderer. We will also release this code.

2.3. Analytic Derivatives of ORF Rendering

In this section, we derive the analytic derivatives of the
NeRF piecewise constant volume rendering model for opti-
mizing ORF directly. Throughout this section we will con-
sider a fixed ray with a given origin and direction.

2.3.1 Definitions

For preciseness, we provide definitions of quantities used in
NeRF volume rendering. The NeRF rendering model con-
siders a ray divided into N consecutive segments with end-
points {ti}Ni=0, where t0 and tN are the near and far bounds.
The segments have constant densities σ = (σ0, . . . , σN−1)
where each σi ≥ 0. If we shine a light of intensity 1 at ti,
then at the camera position t0, the light intensity is given by

Ti(σ) :=
i−1∏
j=0

exp(−δjσj), (6)

Where δi := ti+1−ti are segment lengths as in the main pa-
per. Note that Ti is also known as the accumulated transmit-
tance from t0 to ti. It can be shown that this precisely mod-
els the absorption within each segment in the piecewise-
constant setting.

Let c = (c0, . . . cN−1) be the color associated with seg-
ments 0, . . . , N − 1, and cN be the background light inten-
sity; each c0, . . . , cN ∈ [0, 1]3 is an RGB color. We are
interested in the derivative of the rendered color Ĉ(σ, c)
with respect to σ and c. Note cN (background) is typically
considered a hyperparameter.

2.3.2 Derivation of the Derivatives

From the original NeRF rendering equation from the main
paper (1), we can express the rendered ray color Ĉ(σ, c) as:

Ĉ (σ, c) = TN (σ) cN +
N−1∑
i=0

Ti(σ)
(
1− e−σiδi

)
ci (7)

=
N∑
i=0

wi(σ) ci (8)

Where wi(σ) = Ti(σ) (1− exp(−σiδi)) = Ti(σ) −
Ti+1(σ) are segment weights, and wN (σ) = TN (σ).1

Color derivative. Since the rendered color are a convex
combination of the segment colors, it’s immediately clear
that

∂Ĉ

∂ci
(σ, c) = wi(σ) (9)

Handling spherical harmonics colors is straightforward by
applying the chain rule, noting that the SH basis function
values are constant across the ray.

1Note that the background color cN was omitted in equation (1) of the
main paper for simplicity, and the indices are off by one. We use non-
boldface c, C to distinguish from c,σ.

Density derivative. This is slightly more tricky. We can
write the derivative wrt. σi,

∂Ĉ

∂σi
(σ, c) = cN

∂TN
∂σi

+
N−1∑
k=0

ck

(
∂Tk
∂σi
− ∂Tk+1

∂σi

)
(10)

Where the derivative of the intensity Tk, is

∂Tk
∂σi

(σ) =
∂

∂σi

k−1∏
j=0

e−δjσj

 (11)

= −δi

k−1∏
j=0

e−δjσj

 1k>i (12)

= −δiTk(σ) 1k>i (13)

1k>i denotes an indicator function whose value is 1 if
k > i or 0 else. Basically, we can delete any Tk for k ≤ i
from the original expression, then multiply by −δi. There-
fore we can simplify (10) as follows

∂Ĉ

∂σi
(σ, c) = δi

[
ciTi+1(σ)−

N∑
k=i+1

ck wk(σ)

]
(14)

Remark. Within the ORF renderer, this gradient can be
computed in two rendering passes; the second pass is
needed due to dependency on “future” weights and colors
not seen by the ray marching process. The first pass store∑N
k=0 ck wk(σ), then subtracting a prefix from it. The

overhead is still relatively small, and auxiliary memory use
is constant.

If there are multiple colors, we simply add the density
derivatives over all of them. In practice, usually the network
outputs σ̃i ∈ R and we set σi = (σ̃i)+, so we also need to
take care of setting the gradient to 0 if σ̃i ≤ 0.

2.4. NeRF-SH Training Details

Our NeRF-SH model is built upon a Jax reimplementa-
tion of NeRF [1]. In our experiments, we use a batch size
of 1024 rays, each with 64 sampled points in the coarse vol-
ume and 128 additional sampled points in the fine volume.
The model is optimized with the Adam optimizer [4] using
a learning rate that starts at 5 × 10−4 and decays exponen-
tially to 5×10−6 over the training process. All of our mod-
els are trained for 2M iterations under the same protocol.
Training takes around 50 hours to converge for each model
on a single NVIDIA V100 GPU.

2.5. ORF Optimization Details

After converting the NeRF-SH model into an ORF, we
further optimize the ORF on the training set with SGD.
For NeRF-synthetic dataset, we use a constant 1 × 107

learning rate and optimize for maximum 80 epochs. For
Tanks&Temples dataset, we set the learning rate to 1.5×106
and the maximum epochs to 40. We applied early stop-
ping for the optimization process by monitoring the PSNR
on the validation set2. On average it takes around 10 min-
utes to finish the ORF optimization for each scene on a sin-
gle NVIDIA V100 GPU. The entire optimization process
is done in float32 but after it we storage the ORF with
float16 to reduce the model size.

Acknowledgements
We thank Vickie Ye and Ben Recht for help discussions,

Zejian Wang of Pinscreen for helping with video capture,
and BAIR commons for an allocation of GCP credits.

References
[1] Boyang Deng, Jonathan T. Barron, and Pratul P. Srinivasan.

JaxNeRF: an efficient JAX implementation of NeRF, 2020.
4

[2] Ronald Aylmer Fisher. Dispersion on a sphere. Proceedings
of the Royal Society of London. Series A. Mathematical and
Physical Sciences, 217(1130):295–305, 1953. 1, 2

[3] Paul Heckbert. Color image quantization for frame buffer
display. SIGGRAPH, 1982. 3

[4] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In ICLR, 2015. 4

[5] Zhengqin Li, Mohammad Shafiei, Ravi Ramamoorthi,
Kalyan Sunkavalli, and Manmohan Chandraker. Inverse ren-
dering for complex indoor scenes: Shape, spatially-varying
lighting and svbrdf from a single image. In CVPR, pages
2475–2484, 2020. 2

[6] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and
Christian Theobalt. Neural sparse voxel fields. NeurIPS,
2020. 1

[7] Stephen Lombardi, Tomas Simon, Jason Saragih, Gabriel
Schwartz, Andreas Lehrmann, and Yaser Sheikh. Neural
volumes: Learning dynamic renderable volumes from im-
ages. ACM Transactions on Graphics (TOG), 38(4):65:1–
65:14, 2019. 1

[8] Jean loup Gailly and Mark Adler. zlib, 2017. 3
[9] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,

Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. NeRF:
Representing scenes as neural radiance fields for view syn-
thesis. ECCV, 2020. 1

[10] Vincent Sitzmann, Michael Zollhöfer, and Gordon Wet-
zstein. Scene representation networks: Continuous 3d-
structure-aware neural scene representations. In NeurIPS,
2019. 1

[11] Peter-Pike Sloan, Jan Kautz, and John Snyder. Precomputed
radiance transfer for real-time rendering in dynamic, low-
frequency lighting environments. In SIGGRAPH, pages 527–
536, 2002. 2

2For Tanks&Temples dataset, we hold out 10% of the training set as
validation set.

[12] Yu-Ting Tsai and Zen-Chung Shih. All-frequency precom-
puted radiance transfer using spherical radial basis functions
and clustered tensor approximation. ACM Transactions on
graphics (TOG), 25(3):967–976, 2006. 2

PSNR ↑
Chair Drums Ficus Hotdog Lego Materials Mic Ship Mean

NeRF (original) 33.00 25.01 30.13 36.18 32.54 29.62 32.91 28.65 31.01
NeRF 34.08 25.03 30.43 36.92 33.28 29.91 34.53 29.36 31.69
SRN 26.96 17.18 20.73 26.81 20.85 18.09 26.85 20.60 22.26
Neural Volumes 28.33 22.58 24.79 30.71 26.08 24.22 27.78 23.93 26.05
NSVF 33.19 25.18 31.23 37.14 32.29 32.68 34.27 27.93 31.75

NeRF-SH 33.98 25.17 30.72 36.75 32.77 29.95 34.04 29.21 31.57
PlenOctree from NeRF-SH 33.19 25.01 30.56 36.15 32.12 29.56 33.01 28.58 31.02
PlenOctree after fine-tuning 34.66 25.31 30.79 36.79 32.95 29.76 33.97 29.42 31.71

SSIM ↑
Chair Drums Ficus Hotdog Lego Materials Mic Ship Mean

NeRF (original) 0.967 0.925 0.964 0.974 0.961 0.949 0.980 0.856 0.947
NeRF 0.975 0.925 0.967 0.979 0.968 0.952 0.987 0.868 0.953
SRN 0.910 0.766 0.849 0.923 0.809 0.808 0.947 0.757 0.846
Neural Volumes 0.916 0.873 0.910 0.944 0.880 0.888 0.946 0.784 0.893
NSVF 0.968 0.931 0.960 0.987 0.973 0.854 0.980 0.973 0.953

NeRF-SH 0.974 0.927 0.968 0.978 0.966 0.951 0.985 0.866 0.952
PlenOctree from NeRF-SH 0.970 0.927 0.968 0.977 0.965 0.953 0.983 0.863 0.951
PlenOctree after fine-tuning 0.981 0.933 0.970 0.982 0.971 0.955 0.987 0.884 0.958

LPIPS ↓
Chair Drums Ficus Hotdog Lego Materials Mic Ship Mean

NeRF (original) 0.046 0.091 0.044 0.121 0.050 0.063 0.028 0.206 0.081
NeRF 0.035 0.085 0.038 0.079 0.040 0.060 0.019 0.185 0.068
SRN 0.106 0.267 0.149 0.100 0.200 0.174 0.063 0.299 0.170
Neural Volumes 0.109 0.214 0.162 0.109 0.175 0.130 0.107 0.276 0.160
NSVF 0.043 0.069 0.017 0.025 0.029 0.021 0.010 0.162 0.047

NeRF-SH 0.037 0.087 0.039 0.041 0.041 0.060 0.021 0.177 0.063
PlenOctree from NeRF-SH 0.039 0.088 0.038 0.044 0.046 0.063 0.023 0.189 0.066
PlenOctree after fine-tuning 0.022 0.076 0.038 0.032 0.034 0.059 0.017 0.144 0.053

FPS ↑
Chair Drums Ficus Hotdog Lego Materials Mic Ship Mean

NeRF (original) 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023
NeRF 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045
SRN 0.909 0.909 0.909 0.909 0.909 0.909 0.909 0.909 0.909
Neural Volumes 3.330 3.330 3.330 3.330 3.330 3.330 3.330 3.330 3.330
NSVF 1.044 0.735 0.597 0.660 0.633 0.517 1.972 0.362 0.815

NeRF-SH 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051
PlenOctree 352.4 175.9 85.6 95.5 186.8 64.2 324.9 56.0 167.7

Table 3: Per-scene quantitive results on NeRF-synthetic dataset.

PSNR ↑
Barn Caterpillar Family Ignatius Truck Mean

NeRF (original) 24.05 23.75 30.29 25.43 25.36 25.78
NeRF 27.39 25.24 32.47 27.95 26.66 27.94
SRN 22.44 21.14 27.57 26.70 22.62 24.09
Neural Volumes 20.82 20.71 28.72 26.54 21.71 23.70
NSVF 27.16 26.44 33.58 27.91 26.92 28.40

NeRF-SH 27.05 25.06 32.28 28.06 26.66 27.82
PlenOctree from NeRF-SH 25.78 24.80 32.04 27.92 26.15 27.34
PlenOctree after fine-tuning 26.80 25.29 32.85 28.19 26.83 27.99

SSIM ↑
Barn Caterpillar Family Ignatius Truck Mean

NeRF (original) 0.750 0.860 0.932 0.920 0.860 0.864
NeRF 0.842 0.892 0.951 0.940 0.896 0.904
SRN 0.741 0.834 0.908 0.920 0.832 0.847
Neural Volumes 0.721 0.819 0.916 0.922 0.793 0.834
NSVF 0.823 0.900 0.954 0.930 0.895 0.900

NeRF-SH 0.838 0.891 0.949 0.940 0.895 0.902
PlenOctree from NeRF-SH 0.820 0.889 0.948 0.940 0.889 0.897
PlenOctree after fine-tuning 0.856 0.907 0.962 0.948 0.914 0.917

LPIPS ↓
Barn Caterpillar Family Ignatius Truck Mean

NeRF (original) 0.395 0.196 0.098 0.111 0.192 0.198
NeRF 0.286 0.189 0.092 0.102 0.173 0.168
SRN 0.448 0.278 0.134 0.128 0.266 0.251
Neural Volumes 0.479 0.280 0.111 0.117 0.312 0.260
NSVF 0.307 0.141 0.063 0.106 0.148 0.153

NeRF-SH 0.291 0.185 0.091 0.091 0.175 0.167
PlenOctree from NeRF-SH 0.296 0.188 0.094 0.092 0.180 0.170
PlenOctree after fine-tuning 0.226 0.148 0.069 0.080 0.130 0.131

FPS ↑
Barn Caterpillar Family Ignatius Truck Mean

NeRF (original) 0.007 0.007 0.007 0.007 0.007 0.007
NeRF 0.013 0.013 0.013 0.013 0.013 0.013
SRN 0.250 0.250 0.250 0.250 0.250 0.250
Neural Volumes 1.000 1.000 1.000 1.000 1.000 1.000
NSVF 10.74 5.415 2.625 6.062 5.886 6.146

NeRF-SH 0.015 0.015 0.015 0.015 0.015 0.015
PlenOctree (ours) 46.94 54.00 32.33 15.67 62.16 42.22

Table 4: Per-scene quantitive results on Tanks&Temples dataset.

PSNR ↑
Chair Drums Ficus Hotdog Lego Materials Mic Ship Mean

Ours-1.9G 34.66 25.31 30.79 36.79 32.95 29.76 33.97 29.42 31.71
Ours-1.4G 34.66 25.30 30.82 36.36 32.96 29.75 33.98 29.29 31.64
Ours-0.4G 32.92 24.82 30.07 36.06 31.61 28.89 32.19 29.04 30.70
Ours-0.3G 32.03 24.10 29.42 34.46 30.25 28.44 30.78 27.36 29.60

GB ↓
Chair Drums Ficus Hotdog Lego Materials Mic Ship Mean

Ours-1.9G 0.830 1.240 1.791 2.674 2.067 3.682 0.442 2.689 1.93
Ours-1.4G 0.671 0.852 0.943 1.495 1.421 3.060 0.569 1.881 1.36
Ours-0.4G 0.176 0.350 0.287 0.419 0.499 0.295 0.327 1.195 0.44
Ours-0.3G 0.131 0.183 0.286 0.403 0.340 0.503 0.159 0.381 0.30

FPS ↑
Chair Drums Ficus Hotdog Lego Materials Mic Ship Mean

Ours-1.9G 352.4 175.9 85.6 95.5 186.8 64.2 324.9 56.0 167.7
Ours-1.4G 399.7 222.2 147.3 163.5 247.9 68.0 393.8 75.4 214.7
Ours-0.4G 639.6 290.0 208.7 273.5 339.0 268.0 522.6 86.7 328.5
Ours-0.3G 767.6 424.1 203.8 271.7 443.6 189.1 796.4 181.1 409.7

Table 5: Per-scene quantitive results on ORF conversion ablations.

PSNR ↑
Chair Drums Ficus Hotdog Lego Materials Mic Ship Mean

NeRF-SH9 33.88 25.24 30.69 36.68 32.73 29.53 33.68 29.11 31.44
NeRF-SH16 33.98 25.17 30.72 36.75 32.77 29.95 34.04 29.21 31.57
NeRF-SH25 34.01 25.10 30.52 36.83 32.76 30.06 34.08 29.11 31.56
NeRF-SG25 34.08 25.40 31.21 36.92 32.93 29.77 34.31 29.28 31.74

PlenOctree-SH9 34.38 25.34 30.72 36.68 32.79 29.16 33.23 29.28 31.45
PlenOctree-SH16 34.66 25.31 30.79 36.79 32.95 29.76 33.97 29.42 31.71
PlenOctree-SH25 34.72 25.32 30.68 36.96 32.85 29.79 33.90 29.29 31.69
PlenOctree-SG25 34.37 25.52 31.16 36.67 32.98 29.41 33.63 29.32 31.63

SSIM ↑
Chair Drums Ficus Hotdog Lego Materials Mic Ship Mean

NeRF-SH9 0.973 0.928 0.968 0.978 0.966 0.948 0.984 0.864 0.951
NeRF-SH16 0.974 0.927 0.968 0.978 0.966 0.951 0.985 0.866 0.952
NeRF-SH25 0.973 0.926 0.967 0.978 0.966 0.952 0.985 0.864 0.951
NeRF-SG25 0.974 0.930 0.971 0.978 0.967 0.951 0.986 0.867 0.953

PlenOctree-SH9 0.980 0.934 0.970 0.982 0.970 0.950 0.984 0.881 0.956
PlenOctree-SH16 0.981 0.933 0.970 0.982 0.971 0.955 0.987 0.884 0.958
PlenOctree-SH25 0.981 0.935 0.971 0.983 0.971 0.955 0.987 0.883 0.958
PlenOctree-SG25 0.980 0.937 0.973 0.982 0.972 0.953 0.986 0.883 0.958

LPIPS ↓
Chair Drums Ficus Hotdog Lego Materials Mic Ship Mean

NeRF-SH9 0.037 0.086 0.043 0.044 0.042 0.063 0.023 0.180 0.065
NeRF-SH16 0.037 0.087 0.039 0.041 0.041 0.060 0.021 0.177 0.063
NeRF-SH25 0.038 0.087 0.039 0.040 0.041 0.061 0.021 0.179 0.063
NeRF-SG25 0.036 0.083 0.034 0.042 0.041 0.060 0.020 0.176 0.062

PlenOctree-SH9 0.023 0.075 0.041 0.034 0.036 0.068 0.025 0.146 0.056
PlenOctree-SH16 0.022 0.076 0.038 0.032 0.034 0.059 0.017 0.144 0.053
PlenOctree-SH25 0.023 0.072 0.036 0.031 0.034 0.060 0.017 0.145 0.052
PlenOctree-SG25 0.023 0.069 0.034 0.033 0.033 0.064 0.019 0.144 0.052

GB ↓
Chair Drums Ficus Hotdog Lego Materials Mic Ship Mean

PlenOctree-SH9 0.45 0.67 1.15 1.27 1.16 1.48 0.16 1.67 1.00
PlenOctree-SH16 0.83 1.24 1.79 2.67 2.07 3.68 0.44 2.69 1.93
PlenOctree-SH25 1.30 1.97 2.57 3.80 3.61 4.04 0.55 3.61 2.68
PlenOctree-SG25 1.03 1.68 2.43 2.66 2.66 4.44 0.49 2.71 2.26

FPS ↑
Chair Drums Ficus Hotdog Lego Materials Mic Ship Mean

PlenOctree-SH9 521.1 255.6 116.7 183.0 275.1 132.3 519.4 90.6 261.7
PlenOctree-SH16 352.4 175.9 85.6 95.5 186.8 64.2 324.9 56.0 167.7
PlenOctree-SH25 269.2 126.7 67.0 66.4 127.1 48.9 279.2 41.3 128.2
PlenOctree-SG25 306.6 151.9 74.1 104.3 153.3 51.0 294.2 69.6 150.6

Table 6: Per-scene quantitive results on spherical basis function ablations.

