
Supplementary Material:

Skeleton2Mesh: Kinematics Prior Injected Unsupervised Human Mesh Recovery

Zhenbo Yu1,2*, Junjie Wang1,2*, Jingwei Xu1,2, Bingbing Ni1,2†

Chenglong Zhao1,2, Minsi Wang1,2, Wenjun Zhang1,2

1Shanghai Jiao Tong University, 2Shanghai Key Lab of Digital Media Processing & Transmission

{yuzhenbo, dreamboy.gns, xjwxjw, nibingbing, cl-zhao,mswang1994, zhangwenjun}@sjtu.edu.cn

1. Detailed Architecture

The baseline of unsupervised 3D pose estimation in our

work is based on [2]. The basic building blocks of all our

modules are residual blocks, which can be divided into two

types: Res1 Block, and Res2 Block (see Fig. 2).

Residual Block The building block of our network ar-

chitecture (the residual block illustrated in Fig. 1) is gen-

erally inspired from [5]. Res2 Block has two branches:

one branch consists of two convolutional layers followed

by batch normalization, ReLU activation and dropout lay-

ers sequentially; the other branch is a shortcut processing

the concatenation of upstream features and input 2D joints.

The kernel size and stride of each layer is equal to 1. Res1

Block is similar to Res2 Block, but with some extra layers in

the main branch to process input 2D joints. All features are

of dimension 1024 in residual block except the skip layer.

Network architecture As is shown in Fig. 2, in terms

of our pose estimation baseline, we use five residual blocks

for the lifting network and two blocks for the discrimina-

tor. Specifically, we remove the batch norm layers from the

residual block in discriminator to maintain the network sta-

ble in the training stage. Besides, we use resnet18[4] as the

feature extractor from silhouettes. Four parallel fully con-

nected layers are used to learn body shapes, perform pose

refinement, learn camera intrinsics and learn viewpoints.

We denote residual blocks above as “n × Res Block”.

Geometric Random Rotation. Geometric random rota-

tion in our paper is similar to [2]. Before being passed to

the pipeline for the second time, the 3D poses need to be

randomly rotated, shifted and then projected onto 2D plane.

During this process, we first uniformly sample the angles

from predefined ranges. In this work, we set the ranges

to [−7π/9, 7π/9], [−π/9, π/9], [−π/18, π/18] for y, x, z
axes respectively. We then use rodrigues formula to get cor-

responding rotation matrices, multiply them in order(e.g. y,

x, z) and obtain final rotation matrix R.

*equal contribution
†corresponding author

Baselines Adv. Loss Azimuth MPJPE PMPJPE

Baseline[2] BCE π - 68.0

*Baseline[2] BCE π 119.3 64.3

Variant LS π 116.7 58.6

Final Baseline LS 7/9 ∗ π 112.6 54.6

Table 1: The analysis on baseline performance. * indicates

our implementation according to [2]. Based on our imple-

mentation, we further make some improvements, as listed

in the table. Adv Loss: adversarial loss function. BCE:

binary cross entropy loss. LS: least square loss. Azimuth:

the maximum azimuth in geometric random rotation.

Analysis on baseline performance. Without access to

the source code of [2], we re-implement the baseline used

in [2]. As shown in Tab. 1, the same baseline based on

our implementation is better than that in [2]. Furthermore,

we employ a different adversarial loss function (Variant),

which further facilitates the performance of the network.

Finally, we carefully set the ranges in geometric random ro-

tations. We empirically find that using a smaller maximum

azimuth(7π/9 instead of π in [2]) results in better perfor-

mance. Rotations around x and z axes are limited to π/9
and π/18 respectively. More details in our implementation

can be seen in our released code.

2. Differentiable Inverse Kinematics

In this section, we describe the detailed matching process

of all the ten local 3D rotations including right elbow, which

is introduced in the main body of our paper. Note that the

ten units (e.g., right hip, right knee, left hip, left knee, right

shoulder, right elbow, left shoulder, left elbow, neck, and

spine) are almost at the same position in different datasets

(see Fig. 3), thus the DIK module is able to generalize to all

the datasets with different topologies.

As is illustrated in Fig. 4, 3D joints (blue circle) in 3D

skeleton are utilized to match the corresponding local 3D

rotations (orange circle) in θmain via DIK module. 3D

joints (red circle) in 3D skeleton (including head, hand, and

B
at

ch
N

o
rm

R
eL

U

D
ro

p
o

u
t

B
at

ch
N

o
rm

R
eL

U

D
ro

p
o

u
t

B
at

ch
N

o
rm

R
eL

U

D
ro

p
o

u
t

1
0
2
4
,1

S
1
,1

0
2
4

2
J,

1
S

1
,1

0
2
4

1
0
2
4
,1

S
1
,1

0
2
4

1058,1S1,1024

Res1 Block

B
at

ch
N

o
rm

R
eL

U

D
ro

p
o

u
t

B
at

ch
N

o
rm

R
eL

U

D
ro

p
o
u
t

1
0
2
4
,1

S
1
,1

0
2
4

1
0
2
4
,1

S
1
,1

0
2
4

1058,1S1,1024

Res2 Block

…

Figure 1: The detailed architecture of the Residual Block including Res1 Block and Res2 Block. The input consists of 2D

keypoints with J=17 joints. Convolutional layers are in red where 2J , 1S1, 1024 denote 2J input channels, kernels of size 1

with stride 1, and 1024 output channels. And the skip layer 1058, 1S1, 1024 denotes 1058 input channels, kernels of size 1

with stride 1, and 1024 output channels.

lifting network

Feature extractor

𝜃𝑃𝑅
resnet18

fc

discriminator

Res2 Block 𝑅𝑒𝑎𝑙/𝐹𝑎𝑘𝑒Res1 Block fc

𝑍Res1 Block 4X Res2 Block

𝛽fc 𝑠, 𝑡fc 𝑅fc

Figure 2: The detailed architecture of the lifting network,

the discriminator and the shape matching branch. fc de-

notes fully connected layer with 1024 dimension features.

θPR indicates five local 3D rotations (i.e., one in the head,

two in hands, and two in feet). β represents the shape pa-

rameters of SMPL model. s, t and R denote the camera

intrinsics and the global 3D rotation, respectively.

foot) lack sufficient kinematics constraint (please refer to

DIK module), thus we use PR module to learn the suit-

able local 3D rotations from silhouettes. Therefore, the root

joint (yellow circle) is also trained to obtain the correspond-

ing global 3D rotation in θmain. Finally, some local 3D

rotations (red circle) in θother have little effect on SMPL.

Concretely, four local 3D rotations in the body are almost

unchanged, and the four ones in the endpoint, which repre-

sents fingers and toes, are generally ignored in human mesh

recovery. To this end, we do not do any matching opera-

tions these local 3D rotations (red circle) and set these ones

to the default value in SMPL.

We define the ten unit mapping equations by differen-

tiable inverse kinematics manually (see Fig. 5), and the

definition of coordinate system is exactly similar as SMPL

based on left-handed coordinate system. Additionally, man-

ual intervention is only required once. When we use other

dataset like Surreal or 3DHP, we do not need to define these

mapping equations any more. The mapping equations of

Human3.6M are also suitable for other datasets. The corre-

sponding mapping equations are shown as follows:

(1). Right Hip














[xp, yp, zp] = [
lhp rh

|lhp rh|
, xp ⊗ zp,

lhp rh ⊗ lhp s

|lhp rh ⊗ lhp s|
]

[xc, yc, zc] = [
lrk ra ⊗ lrh rk

|lrk ra ⊗ lrh rk|
,

lrh rk

|lrh rk|
, yc ⊗ xc]

(1)

(2). Right Knee














[xp, yp, zp] = [
lrk ra ⊗ lrh rk

|lrk ra ⊗ lrh rk|
,

lrh rk

|lrh rk|
, yp ⊗ xp]

[xc, yc, zc] = [xp,
lrk ra

|lrk ra|
, yc ⊗ xc]

(2)

(3). Left Hip














[xp, yp, zp] = [
−lhp lh

|lhp lh|
, xp ⊗ zp,

−lhp lh ⊗ lhp s

| − lhp lh ⊗ lhp s|
]

[xc, yc, zc] = [
llk la ⊗ llh lk

|llk la ⊗ llh lk|
,

llh lk

|llh lk|
, yc ⊗ xc]

(3)

(4). Left Knee














[xp, yp, zp] = [
llk la ⊗ llh lk

|llk la ⊗ llh lk|
,

llh lk

|llh lk|
, yp ⊗ xp]

[xc, yc, zc] = [xp,
llk la

|llk la|
, yc ⊗ xc]

(4)

(5). Right Shoulder














[xp, yp, zp] = [
ln rs

|ln rs|
, xp ⊗ zp,

−ls n ⊗ ln rs

| − ls n ⊗ ln rs|
]

[xc, yc, zc] = [
lrs re

|lrs re|
,

lre rw ⊗ lrs re

|lre rw ⊗ lrs re|
, yc ⊗ xc]

(5)

Figure 3: Detailed information of ten nine units (skeleton in the left, and SMPL model in the right), including right hip, right

knee, left hip, left knee, right shoulder, right elbow, left shoulder, left elbow, neck, and spine.

pose θ
PR

DIK

3D joints θotherθmain ⋃
Figure 4: Detailed correspondence between 3D skeleton

and 3D rotation. Blue and orange circle denotes joints

matched by DIK and PR modules, respectively. And the

red circle indicates that no suitable joints to match. Notably,

yellow circle representing root orientation is trained by the

network independently. θmain indicates the collection of

five local 3D rotations (orange circles), ten 3D local rota-

tions (blue circles), one global 3D rotation (yellow circles)

in SMPL, and θother indicates the other local 3D rotations.

(6). Right Elbow















[xp, yp, zp] = [
lrs re

|lrs re|
,

lre rw ⊗ lrs re

|lre rw ⊗ lrs re|
, yp ⊗ xp]

[xc, yc, zc] = [
lre rw

|lre rw|
, yp, yc ⊗ xc]

(6)

(7). Left Shoulder















[xp, yp, zp] = [
−ln ls

|ln ls|
, xp ⊗ zp,

ln s ⊗−ln ls

|ln s ⊗−ln ls|
]

[xc, yc, zc] = [
−lls le

|lls le|
,

−lls le ⊗−lle lw

| − lls le ⊗−lle lw|
, yc ⊗ xc]

(7)

𝑙ℎ𝑝_𝑠𝑙ℎ𝑝_𝑙ℎ 𝑙ℎ𝑝_𝑟ℎ
𝑙𝑙ℎ_𝑙𝑘 𝑙𝑟ℎ_𝑟𝑘
𝑙𝑙𝑘_𝑙𝑎 𝑙𝑟𝑘_𝑟𝑎

𝑙𝑙𝑒_𝑙𝑤 𝑙𝑙𝑠_𝑙𝑒 𝑙𝑛_ℎ𝑑
𝑙ℎ𝑑_𝑡

𝑙𝑟𝑠_𝑟𝑒 𝑙𝑟𝑒_𝑟𝑤𝑙𝑛_𝑙𝑠 𝑙𝑛_𝑟𝑠
𝑙𝑠_𝑛

𝑙𝑡_𝑛

Figure 5: Matching details of ten units, including right hip,

right knee, left hip, left knee, right shoulder, right elbow,

left shoulder, left elbow, neck, and spine.

(8). Left Elbow















[xp, yp, zp] = [
−lls le

|lls le|
,

lls le ⊗ lle lw

|lls le ⊗ lle lw|
, yp ⊗ xp]

[xc, yc, zc] = [
−lle lw

|lle lw|
, yp, yc ⊗ xc]

(8)

(9). Neck















[xp, yp, zp] = [zp ⊗ yp,
−ls n

|ls n|
,

−ls n ⊗ ln rs

| − ls n ⊗ ln rs|
]

[xc, yc, zc] = [
lhd t ⊗−ln hd

|lhd t ⊗−ln hd|
,

lt n

|lt n|
, yc ⊗ xc]

(9)

Method HMR GraphCMR SPIN Pose2Mesh ours

PMPJPE 88.4 104.6 55.6 48.7 46.9

Table 2: The accuracy comparison between state-of-the-art

methods and ours on Human3.6M under the same fully su-

pervised setting.

Trainset Human3.6M +3DHP +3DHP+3DPW

PMPJPE 100.0 96.9 90.3

Table 3: Analysis on the generalization ability of proposed

framework. Performance is given on the test set of 3DPW

using different training datasets.

(10). Spine















[xp, yp, zp] = [zp ⊗ yp,
−lhp s

|lhp s|
,

−lhp s ⊗ lhp rh

| − lhp s ⊗ lhp rh|
]

[xc, yc, zc] = [zc ⊗ yc,
−ls n

|ls n|
,

−ls n ⊗ ln rs

| − ls n ⊗ ln rs|
]

(10)

3. Further Experiments & Ablation Study

To perform a more comprehensive and convincing eval-

uation on proposed framework, we conduct some supple-

mentary experiments: performance in fully supervised set-

ting, generalization ability given more in-the-wild images

and usage of DIK module as a supervision method.

With Full Access To 3D Annotation. To further il-

lustrate the effectiveness of proposed framework and com-

pare against state-of-the-art methods, we extend our frame-

work to fully supervised setting. We add a loss term L =
||Ĵ3D − J

3D
gt ||

2

2
to supervise our lifting module by GT 3D

skeleton J
3D
gt . As shown in Tab. 2, PMPJPE improves by a

large margin compared with Pose2Mesh [3] (48.7 → 46.9),

which obviously outperforms other methods.

Generalization Ability of Proposed Framework. To

further prove that our method can generalize better with

more in-the-wild training data, we provide additional ex-

periments results in Tab. 3. We train on different combi-

nations of 3D datasets and test on 3DPW. When introduce

images from MPI-INF-3DHP and 3DPW into training, PM-

PJPE decreases from 100 to 96.9, and further to 90.3, prov-

ing the generalization ability of proposed framework.

Usage of The DIK Module. In proposed framework,

the DIK module is one stage in the pipeline of forward pass,

deriving rotation vectors from upstream 3D keypoint loca-

tions. DIK module is efficient and can be plugged into any

paradigm. However, we find that such practice may fail to

match well with valid pose space of SMPL and suffer from

temporal inconsistency. To alleviate this problem, we pro-

vide a more robust solution: use the DIK module as su-

pervision. To be specific, we use several residual blocks

to learn rotations vectors from upstream 3D skeletons. In

this way, deep neural networks are encouraged to find a

more valid manifold for rotation vectors. Preliminary ex-

periments show that PVE decreases from 120.8 to 115.4 in

this setting. Detailed experiments and analysis are left for

future work.

4. Running Time

On a Titan X GPU, it takes 60ms to estimate SMPL

parameters in our framework from a monocular RGB im-

age. If 2D keypoints and segmentation are obtained be-

forehand, it will only take 10ms for a single forward pass

of our pose matching branch and shape matching branch.

This is much faster than optimization-based methods. For

example, SMPLify [1] reports roughly 1 minute for the op-

timization. Moreover, our network is competitive to other

learning-based methods in terms of speed (e.g. Pavlakos

et al. [6] report 50ms per image), but our performance sur-

passes theirs by significant margins.

5. Visualization Results

We present the visual results on Human3.6M, MPI-INF-

3DHP, Surreal, respectively. More qualitative and quantita-

tive results can be seen in our project page 1.

6. Potential Applications in the Future

Our Skeleton2Mesh, a novel lightweight framework

which relies on a minimal set of kinematics prior knowl-

edge, can apply to real-time task. We provide two demos

(i.e., skeleton to SMPL model with mean shape, and skele-

ton to robot arm) in our project page, and the corresponding

introductions respectively. In the future, we would like to

extend such kind of framework for real-time robot or carton

character control in virtual reality or other applications.

References

[1] Federica Bogo, Angjoo Kanazawa, Christoph Lassner,

Peter V. Gehler, Javier Romero, and Michael J. Black.

Keep it SMPL: automatic estimation of 3d human pose

and shape from a single image. In ECCV, pages 561–

578, 2016. 4

[2] Ching-Hang Chen, Ambrish Tyagi, Amit Agrawal, Dy-

lan Drover, Rohith MV, Stefan Stojanov, and James M.

Rehg. Unsupervised 3d pose estimation with geomet-

ric self-supervision. In CVPR, pages 5714–5724. Com-

puter Vision Foundation / IEEE, 2019. 1

[3] Hongsuk Choi, Gyeongsik Moon, and Kyoung Mu Lee.

Pose2mesh: Graph convolutional network for 3d hu-

man pose and mesh recovery from a 2d human pose.

1https://sites.google.com/view/skeleton2mesh

https://sites.google.com/view/skeleton2mesh

In Andrea Vedaldi, Horst Bischof, Thomas Brox, and

Jan-Michael Frahm, editors, Computer Vision - ECCV

2020 - 16th European Conference, Glasgow, UK, Au-

gust 23-28, 2020, Proceedings, Part VII, volume 12352

of Lecture Notes in Computer Science, pages 769–787.

Springer, 2020. 4

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian

Sun. Deep residual learning for image recognition. In

2016 IEEE Conference on Computer Vision and Pattern

Recognition, CVPR 2016, Las Vegas, NV, USA, June

27-30, 2016, pages 770–778. IEEE Computer Society,

2016. 1

[5] Julieta Martinez, Rayat Hossain, Javier Romero, and

James J. Little. A simple yet effective baseline for 3d

human pose estimation. In ICCV, pages 2659–2668,

2017. 1

[6] Georgios Pavlakos, Luyang Zhu, Xiaowei Zhou, and

Kostas Daniilidis. Learning to estimate 3d human pose

and shape from a single color image. In CVPR, pages

459–468, 2018. 4

