
Supplementary Materials: Towards Alleviating the Modeling Ambiguity of

Unsupervised Monocular 3D Human Pose Estimation

Zhenbo Yu1,2, Bingbing Ni1,2*, Jingwei Xu1,2, Junjie Wang1,2, Chenglong Zhao1,2, Wenjun Zhang1,2

1Shanghai Jiao Tong University, 2Shanghai Key Lab of Digital Media Processing & Transmission

{yuzhenbo, nibingbing, xjwxjw, dreamboy.gns, cl-zhao, zhangwenjun}@sjtu.edu.cn

1. Comparison with SOTA Methods

As illustrated in Tab. 1, the information available for

unsupervised 3D pose estimation largely varies in pre-

vious work [2, 5]. To more comprehensively evaluate

our model, we compare our method with these mentioned

works. Specifically, Chen et.al. [2] transfer the 2d skeletons

from other datasets to the domain of Human3.6M, which

requires large-scale source data for such kind of adapta-

tion. Li et.al. [5] show that a small portion of the labelled

3d skeletons is sufficient to train a 3D pose estimation net-

work with promising performance, which, however, is still

a high cost to acquire in many applications. In contrast to

their designs, we only use 2d skeletons, which is easy to

extract from monocular images, and achieve satisfying re-

sults. More qualitative and quantitative results can be seen

in our project page 1.

2. Detailed Architecture

In Sec. 3.4 we mention that the basic building blocks of

all our modules are residual blocks, which can be divided

into two types: Res1 Block, and Res2 Block (see Fig. 2).

Residual Block. The building block of our network ar-

chitecture (the residual block illustrated in Fig. 1) is gener-

ally inspired from [6].Res2 Block has two branches: one

branch consists of two convolutional layers followed by

batch normalization, ReLU activation and dropout layers

sequentially; the other branch is a shortcut processing the

concatenation of upstream features and input 2D joints. The

kernel size and stride of each layer is equal to 1. Res1 Block

is similar to Res2 Block, but with some extra layers in the

main branch to process input 2D joints. All features are of

dimension 1024 in residual block except the skip layer.

Network Architecture. As is shown in Fig. 2, we use

five residual blocks for the lifting network ΦG, one resid-

ual block for the scale network and two residual blocks for

the discriminator. Specifically, we remove the batch norm

layers from the residual block in discriminator to maintain

*corresponding author
1https://sites.google.com/view/ambiguity-aware-hpe

Algorithm
2D

Pose
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3D Pose

Paired

3D Pose

3D

Prior
PMPJPE

Chen et al.[1] ✓ ✗ ✗ ✗ 68.0

Li et al.[5] ✗ ✗ ✓ ✗ 66.5

Kundu et al. [4] ✓ ✗ ✗ ✓ 63.8

Kundu et al. [3] ✓ ✓ ✗ ✗ 62.4

Ours ✓ ✗ ✗ ✗ 52.3

Table 1: Comparison of our method against previous works,

in terms of supervision signals.

the network stable in the training stage and we denote these

residual blocks as “n × Res Block”.

Geometric Random Rotation. Geometric random rota-

tion in our paper is similar to [1]. Before being passed to

the pipeline for the second time, the 3D poses need to be

randomly rotated, shifted and then projected onto 2D plane.

During this process, we first uniformly sample the angles

from predefined ranges. In this work, we set the ranges

to [−7π/9, 7π/9], [−π/9, π/9], [−π/18, π/18] for y, x, z

axes respectively. We then use rodrigues formula to get cor-

responding rotation matrices, multiply them in order(e.g. y,

x, z) and obtain final rotation matrix R.

Analysis on Essential Operations. Without access to

the source code of [1], we re-implement the baseline used

in [1]. As shown in Tab. 2, the same baseline based on

our implementation is better than that in [1]. We attribute

this improvement to the tuning of essential operations(e.g.

adversarial training and random rotation), To be specific,

we employ a different adversarial loss function (Variant),

which further facilitates the performance of the network.

Finally, we carefully set the ranges in geometric random

rotations. We empirically find that using a smaller max-

imum azimuth(7π/9 instead of π in [1]) results in better

performance. Rotations around x and z axes are limited to

π/9 and π/18 respectively. Similarly, dataset-specific tun-

ing of essential operations can also boost the performance

on MPI-INF-3DHP dataset. We show the results in Tab. 3.

More details in our implementation can be seen in our re-
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Figure 1: The detailed architecture of the Residual Block including Res1 Block and Res2 Block. The input consists of 2D

keypoints with J=17 joints. Convolutional layers are in red where 2J , 1S1, 1024 denote 2J input channels, kernels of size 1

with stride 1, and 1024 output channels. And the skip layer 1058, 1S1, 1024 denotes 1058 input channels, kernels of size 1

with stride 1, and 1024 output channels.

lifting network

scale network

Sfc

discriminator

Res2 Block Real/FakeRes1 Block fc

ZRes1 Block 4X Res2 Block

Res1 Block

Figure 2: The detailed architecture of the lifting network,

the scale network and the discriminator. fc denotes fully

connected layer with 1024 dimension features

Baselines Adv. Loss Azimuth MPJPE PMPJPE

Baseline[1] BCE π - 58.0

*Baseline[1] BCE π 108.6 54.5

Variant LS π 110.0 50.9

Final Baseline LS 7/9 ∗ π 105.0 46.0

Table 2: Analysis on essential operations on the baseline for

Human3.6M. * indicates our implementation according to

[1]. Based on our implementation, we further make some

improvements, as listed in the table. Adv Loss indicates

adversarial loss function. BCE indicates binary cross en-

tropy loss function. LS indicates least square loss function.

Azimuth indicates the maximum azimuth in geometric ran-

dom rotation.

leased code.

Adv. Loss #Critics Azimuth 3D PCK AUC

Binary Cross Entropy 3 π 84.1 48.9

Least Square 3 π 85.1 50.4

Least Square 2 π 85.7 51.2

Least Square 2 7π/9 86.1 51.6

Least Square 2 8π/9 86.2 51.7

Table 3: Analysis on essential operations on MPI-INF-

3DHP. Adv Loss indicates the adversarial loss function.

#Critics represents how many iterations the discriminator

is trained with when lifting module is trained with one it-

eration. Azimuth denotes the maximum azimuth angle in-

volved in random rotation.

3. Another View on Scale Module

Since D ≫ di and Zi = D+di, we have Zi ≈ D, where

the perspective projection can be approximated as follows:

xi =
Xi

D
· fx. (1)

We can see that xi is proportional to Xi

D
(i.e., xi ∼

Xi

D
).

Scale estimation module is firstly utilized to infer the scale

of 3D pose S3D, i.e., xi =
S3D·Xi

D
. It can be alternatively

written as xi =
Xi

SD·D
, where SD = 1

S3D

. This means the

scale estimation module not only restricts the scale of esti-

mated 3D skeleton, but also is able to estimate the relative

depth of the corresponding estimated 3D skeleton. Please

refer to our project page for visually appealing results.

4. More Visual Results

In the following paragraphs, we also report the detailed

visual results about the effectiveness of temporal scale con-

sistency and multi-view motion consistency. Then we

present the visual results of 3D pose estimation based on

our method on Human3.6M, MPI-INF-3DHP, Surreal, re-

spectively. More video results can be seen in our project

page.



Visual results of temporal scale consistency. As illus-

trated in Fig. 5, two sequences in Human3.6M predicted

by our proposed method with/without temporal scale con-

sistency are presented in terms of MPJPE. To demonstrate

the effectiveness of temporal scale consistency, we visual-

ize predicted 3D skeletons and the ground truth in the same

coordinate system simultaneously. Furthermore, compared

to the baseline, we can observe that adding temporal scale

consistency is able to achieve more plausible and valid re-

sults.

Visual results of multi-view motion consistency. As

shown in Fig. 4, the sequence on MPI-INF-3DHP is exhib-

ited with two extra views, which proves the effectiveness of

multi-view motion consistency. Experimental results show

that our method is much more effective than [1]. We have

released our complete code including data processing, visu-

alization, evaluation, etc. in our supplementary materials.
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Figure 3: Qualitative results on Human3.6M. Top row: baseline predictions(red) along with ground truth(green). Bottom

row: our predicted predictions(red) along with ground truth(green).
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Figure 4: Qualitative results on MPI-INF-3DHP. Top row: Our predicted predictions (red) along with ground truth. Middle

row: One view of our predicted predictions(rotated around y axis by π/2). Bottom row: Another view of our predicted

predictions(rotated around y axis by 3π/4).

Figure 5: Qualitative results on Human3.6M, MPI-INF-3DHP, Surreal, and LSP. Top Row:Human3.6M dataset. Middle

Row: MPI-INF-3DHP dataset. Bottom Row: Surreal and LSP datasets.


