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1. Introduction
In this supplementary material, we elaborate the details

on the following aspects:

1. Derivations of quadratic fitting (Sect. 2), providing
detailed mathematical derivations of the solver of the
quadratic surface fitting problem as defined in Eqn. (7)
of the submitted paper.

2. Reproduction experiments of state-of-the-art mod-
els (Sect. 3), providing the details of how we reproduce
the results of existing video frame interpolation mod-
els on the GoPro dataset.

3. Architecture details (Sect. 4), providing the details of
the architecture of the proposed framework.

4. More visual results (Sect. 5), providing more visual
comparisons between our approach and the state-of-
the-art models on both synthetic and real datasets.

2. Derivations of Quadratic Fitting
In this section we elaborate the detailed derivations of

the solution of Eqn. (7) in the submitted paper, i.e. the fol-
lowing least square problem:

min
A,b,c

∑
u

w(u)
∥∥∥d̂(u)− d(u)

∥∥∥2 , (1)

in which d̂(u) is defined with

d̂(u) =
1

2
uTAu+ bTu+ c, u ∈ Z2 ∩ [−n, n]2, (2)

where Z denotes the field of integers, and d(u) provides the
known mapped values of u at the (2n+ 1)2 integer lattices
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on the domain of u as defined in 2. Note that we solve 5
parameters: A = diag([a1, a2]

T), b = [b1, b2]
T, and c.

For n ≥ 1, there are more than 9 known mappings in (1),
making it an over-determined problem.

Denote x = [a1, a2, b1, b2, c]
T as a column vector that

aggregates all unknown parameters. Eqn. (1) could be re-
formulated with the following matrix form

min
x

(y −Px)
T
W (y −Px) , (3)

where y is a (2n + 1)2 × 1 column vector that vectorizes
d(u) and P is a (2n + 1)2 × 5 coefficient matrix, i.e. the
polynomial expansions of x. The weight matrix W is a
(2n+1)2× (2n+1)2 diagonal matrix that vectorizes w(u)
and organizes the values on the diagonal.

Take n = 1 as instance. In this case, y takes the form

y =



d(u)|u=(−1,−1)

d(u)|u=(0,−1)

d(u)|u=(1,−1)

d(u)|u=(−1,0)

d(u)|u=(0,0)

d(u)|u=(1,0)

d(u)|u=(−1,1)

d(u)|u=(0,1)

d(u)|u=(1,1)


, (4)

and C is instantiated with the following 9× 5 matrix:

P =



1
2

1
2 −1 −1 1

0 1
2 0 −1 1

1
2

1
2 1 −1 1

1
2 0 −1 0 1
0 0 0 0 1
1
2 0 1 0 1
1
2

1
2 −1 1 1

0 1
2 0 1 1

1
2

1
2 1 1 1


. (5)



The diagonal weight matrix writes with

W = diag (vec(w)) , (6)

in which w is a column vector organized with the same or-
der w.r.t. u with that of y.

Weighted least squares problems have closed-form solu-
tion. For Eqn. (1), the solution is calculated by

x =
(
PTWP

)−1
PTWy. (7)

Let C =
(
PTWP

)−1
PTW. Since that P and W are

all constant matrices regardless of y, computing the ith el-
ement of x could be achieved with a simple filtering pro-
cess, through multiplying the i th row of C with y. Further
note that y is actually a vectorized representation of a local
(2n + 1) × (2n + 1) field. Therefore, solving the fitting
polynomials at each pixel position could be efficiently im-
plemented through (2n + 1) × (2n + 1) convlutions (or
cross-correlations) between the distance map and the filters
stored in C, which could be precomputed once.

Since that the least squares (1) is unconstrained, The es-
timated A = diag([a1, a2])

T may have negative diagonal
parameters, up to the shape of d(u), making it not positive-
definite. We address this issue by simply assigning

a1 = max(a1, ε), a2 = max(a2, ε), (8)

where ε is a small constant.

3. Reproduction Experiments
Evaluation polices used by previous works on the Go-

Pro dataset are inconsistent in several aspects. For example,
SloMo [3] and QVI [10] are evaluated with 7x interpolation,
while EMD [4] and EDVI [7] 10x instead. Also, QVI [10]
reports the quantitative results computed on the full test im-
ages without cropping, while FLAVR [6] reports those on
cropped test images. These inconsistencies make the results
of existing works not directly comparable.

In the Sect. 4.1 of our paper, we aim to provide stan-
dard benchmarking results on the GoPro and SloMo-DVS
datasets with unified settings, so as to ease future research
in this field. By the time of submission, our reproduction
experiments involve the following works which we con-
sider representative in the literature: SloMo [3], QVI [10],
DAIN [1], FLAVR [6], BHA [8] and EDVI [7], TAMI [2]
and EMD [4]. In the following, we first describe the general
settings of our evaluation policy, then explain the details of
the reproduction experiments related to each approach.

Evaluation policy. For fair comparisons, we unify all
the evaluations on 10x interpolation unless explained. We
compute PSNRs and SSIMs on the full test images without
any cropping. For each test video, we first sample the 11th
and 21th frames as input and test on the frames in between,

Table 1. Comparing reproduction results of SloMo, QVI, DAIN
and FLAVR with those of [6], using the same setting with [6].

DAIN SloMo QVI FLAVR

ours 29.01 29.78 31.57 31.31
[6] 29.00 28.52 30.55 31.31

then 21th and 31th frames as input, and so on. Note that we
exclude the first and last several frames for evalution since
some exising work (e.g. QVI) requires a longer temporal
window (e.g. consecutive 4 frames) of input frames.

SloMo, QVI, DAIN and FLAVR. The original version
of QVI involves training on private datasets compiled by
the authors, while DAIN does not report results on multi-
frame interpolation on the GoPro dataset. Recently, Kalluri
et al. [6] provides unified evaluation of these approaches,
however they evaluate 7x interpolation and test on 512×512
patches cropped from the original 1280 × 720 test images.
These settings are not consistent with ours. To this end we
first reproduce the results of these methods using the same
settings of [6], then adapt these verified re-implementations
to train the 10x models in our setting. Note for FLAVR we
directly adopt the default training parameters released by
the authors, which reproduce their results. See Table 1 for
comparisons between our replementations and those of [6].

EDVI. The authors of EDVI provide us the code to cre-
ate and run their models. However, the training code, con-
figuration or pretrained model on the GoPro datset is not re-
leased. Due to the lacks of sufficient details, official models
or training code, evaluation policies, on the GoPro dataset,
we failed to reproducing their reported results. Instead, we
tried our best to search for the optimal configurations of
their approach (e.g. tried different lengths of the sampled
training sequences, followed the same strategies to generate
events), and report the best performance in our setting. We
suspect that the gap between our reproduced performance
and that reported by the authors of [7] is mainly due to the
inconsistency of evaluation policy. For example, the perfor-
mance of TNTT [5] (which releases pretrained models on
GoPro dataset) is 32.47 in PSNR as reported in the Table
1 of [7], while is however up to 29.52 as reported in a re-
cent work [9]. Using the pretrained model, TNTT achieves
28.13 in PSNR in our evaluation, which is in similar with
that of [9] however much different with that of [7].

BHA and EMD. Since that EMD adopts the similar 10x
interpolation setting with that of ours on the GoPro dataset,
we directly copy the results reported by the authors. BHA
is also taken there, as evaluated by the authors of EMD.

Benchmarking details on SloMo-DVS dataset. We re-
train the models above and the proposed approach on the
SloMo-DVS dataset using the same configuration parame-
ters without much tuning. We test BHA using the default
parameter settings released by the authors.



4. Architecture Details
Architecture details are illustrated in Fig.1, 2, 3.

5. More results
More qualitative comparisons on GoPro and Slomo-DVS

are illustrated in Fig.4, 5, 6, 7, 8, 9, 10, 11. More qual-
itative comparisons on real data can be found in https:
//youtu.be/ktG5U3WKGes
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Figure 1. Architecture details of CAF, including detailed layer configurations of the two-branch Unet and multiscale branch fusion blocks.
Best viewed with color.
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Figure 3. Architecture details of stage2. Subpixel Motion Transformer (SMT). Best viewed with color.
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Figure 4. More results on GoPro. Best compared in the electronic version of this paper with zoom.
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Figure 5. More results on GoPro. Best compared in the electronic version of this paper with zoom.
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Figure 6. More results on GoPro. Best compared in the electronic version of this paper with zoom.
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Figure 7. More results on GoPro. Best compared in the electronic version of this paper with zoom.
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Figure 8. More results on Slomo-DVS. Best compared in the electronic version of this paper with zoom.
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Figure 9. More results on Slomo-DVS. Best compared in the electronic version of this paper with zoom.
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Figure 10. More results on Slomo-DVS. Best compared in the electronic version of this paper with zoom.
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Figure 11. More results on Slomo-DVS. Best compared in the electronic version of this paper with zoom.


