
A. Preliminary
Notation. We first introduce necessary notations as follows.

• x(k) = [(x
(k)
1 )T ; (x

(k)
2 )T ; · · · ; (x(k)

n )T ] ∈ Rn×d

• ∇F (x(k); ξ(k)) = [∇F1(x
(k)
1 ; ξ

(k)
1 )T ; · · · ;∇Fn(x

(k)
n ; ξ

(k)
n )T ] ∈ Rn×d

• ∇f(x(k)) = [∇f1(x(k)
1 )T ;∇f2(x(k)

2 )T ; · · · ;∇fn(x(k)
n )T ] ∈ Rn×d

• f(x(k)) =
∑n

i=1 f(x
(k)
i )

• x̄(k) = [(x̄(k))T ; (x̄(k))T ; · · · ; (x̄(k))T ] ∈ Rn×d where x̄(k) = 1
n

∑n
i=1 x

(k)
i

• x⋆ = [(x⋆)T ; (x⋆)T ; · · · ; (x⋆)T ] ∈ Rn×d where x⋆ is the global solution to problem (1).

• W = [wij ] ∈ Rn×n is the weight matrix.

• 1n = col{1, 1, · · · , 1} ∈ Rn.

• Given two matrices x,y ∈ Rn×d, we define inner product ⟨x,y⟩ = tr(xTy), the Frobenius norm ∥x∥2 = ⟨x,x⟩, and
the ∥x∥2 as x’s ℓ2 norm. Furthermore, for a positive semi-definite matrix A ∈ Rn×n, we define ⟨x,y⟩A = tr(xTAy)
and ∥x∥2A = ⟨x,x⟩A for simplicity.

• Given W ∈ Rn×n, we let ∥W∥2 = σmax(W ) where σmax(·) denote the maximum sigular value.

GmSGD in matrix notation. For ease of analysis, we rewrite the recursion of GmSGD in Algorithm 1 with matrix notation:

m(k+1) = βm(k) +∇F (x(k); ξ(k)) (14)

x(k+1) = W (x(k) − γm(k+1)) (15)

DecentLaM in matrix notation. We can also rewrite DecentLaM in Algorithm 2 with matrix notation:

g̃(k) =
1

γ
x(k) − 1

γ
W (x(k) − γ∇F (x(k), ξ(k))) (16)

m(k+1) = βm(k) + g̃(k) (17)

x(k+1) = x(k) − γm(k+1) (18)

Moreover, we define g(k) = E[g̃(k)] = 1
γx

(k) − 1
γW (x(k) − γ∇f(x(k)))

Smoothness. Since each fi(x) is assumed to be L-smooth in Assumption A.1, it holds that f(x) = 1
n

∑n
i=1 fi(x) is also

L-smooth. As a result, the following inequality holds for any x, y ∈ Rd:

fi(x)− fi(y)−
L

2
∥x− y∥2 ≤ ⟨∇fi(y), x− y⟩ (19)

Network weight matrix. Suppose a symmetric matrix W ∈ Rn×n satisfies Assumption A.3, and λj denotes its j-th largest
eigenvalue. It holds that 1 = λ1 > λ2 ≥ · · · ≥ λn > −1. As a result, it holds that

∥W∥2 = 1, and ∥I −W∥2 ≤ 1− λn. (20)

If W satisfying Assumption A.3 is further assumed to be positive-definite, it holds that 1 = λ1 > λ2 ≥ · · · ≥ λn > 0.
Submultiplicativity of the Frobenius norm. Given matrices W ∈ Rn×n and y ∈ Rn×d, it holds that

∥Wy∥ ≤ ∥W∥2∥y∥. (21)

To verify it, by letting yj be the j-th column of y, we have ∥Wy∥2 =
∑d

j=1 ∥Wyj∥22 ≤
∑d

j=1 ∥W∥22∥yj∥22 = ∥W∥22∥y∥2.



B. Reformulation of DmSGD and DecentLaM
B.1. Reformulation of DmSGD

In this section we show how DmSGD algorithm 1 can be rewritten as (6). To this end, we rewrite (15) as

βx(k) = W (βx(k−1) − γβm(k)). (22)

Subtracting (22) from (15), we have

x(k+1) − βx(k) = W
(
x(k) − βx(k−1) − γ(m(k+1) − βm(k))

) (14)
= W

(
x(k) − βx(k−1) − γ∇F (x(k); ξ(k))

)
(23)

which is equivalent to

x(k+1) = W
(
x(k) − γ∇F (x(k); ξ(k))

)︸ ︷︷ ︸
DSGD

+β(x(k) −Wx(k−1))︸ ︷︷ ︸
momentum

. (24)

When a full-batch gradient is used, the above recursion becomes

x(k+1) = W
(
x(k) − γ∇f(x(k))

)
+ β(x(k) −Wx(k−1)) (25)

which is essentially recursion (6) in the matrix notation.

B.2. Reformulation of DecentLaM

In this section we show the equivalence between Algorithm 2 and recursion (8). To this end, we rewrite (18) as

βx(k) = βx(k−1) − γβm(k). (26)

Subtracting (26) from (18), we have

x(k+1) − βx(k) = x(k) − βx(k−1) − γ(m(k+1) − βm(k))

(17)
= x(k) − βx(k−1) − γg̃(k)

(16)
= W (x(k) − γ∇F (x(k), ξ(k)))− βx(k−1) (27)

which is equivalent to

x(k+1) = W (x(k) − γ∇F (x(k), ξ(k)))︸ ︷︷ ︸
DSGD

+β(x(k) − x(k−1))︸ ︷︷ ︸
momentum

(28)

When a full-batch gradient is used, the above recursion becomes

x(k+1) = W
(
x(k) − γ∇f(x(k))

)
+ β(x(k) − x(k−1)) (29)

which is essentially recursion (8) in the matrix notation.

C. Limiting Bias of Decentralized Algorithms
C.1. Limiting bias of DSGD

In this section we illustrate the stochastic bias and inconsistency bias in the DSGD algorithm. It is established in [57] that
DSGD in the strongly-convex scenario will converge as follows:

1

n

n∑
i=1

E∥x(k)
i − x⋆∥2 = O

(
(1− γµ)k︸ ︷︷ ︸
convg. rate

+ γσ2︸︷︷︸
sto. bias

+ γ2b2︸︷︷︸
inconsis. bias

)
. (30)



where σ2 is the variance of gradient noise, and b2 is the data inconsistency (see the definition in Proposition 2). When
learning rate is constant and iteration k goes to infinity, DSGD will converge with limiting bias. i.e.,

Limiting bias = lim sup
k→∞

1

n

n∑
i=1

E∥x(k)
i − x⋆∥2 = O

(
γσ2︸︷︷︸

sto. bias

+ γ2b2︸︷︷︸
inconsis. bias

)
(31)

As we discussed in Sec. 4, the limiting bias can be divided into two categories: stochastic bias and inconsistency bias. The
stochastic bias is caused by the gradient noise. In the large-batch scenario in which the gradient noise σ2 gets significantly
reduced, the inconsistency bias will dominate the magnitude of DSGD’s limiting bias.

C.2. Inconsistency bias of DmSGD (Proof of Proposition 2)

In this section we will prove Proposition 2. To achieve the inconsistency bias, we let xm be the fixed point of x(k), i.e.,
x(k) → xm. From recursion (25), it is derived that xm satisfies

(1− β)(I −W )xm = −γW∇f(xm). (32)

Bound of ∥xm − x̄m∥. Letting x̄m = 1
n11

Txm, it holds that (I −W )x̄m = 0 because W1 = 1 (see Assumption A.3).
Substituting (I −W )x̄m = 0 into (32), we have

(1− β)(I −W )(xm − x̄m) = −γW∇f(xm). (33)

Since W is symmetric and satisfies W1 = 1 (see Assumption A.3), we can eigen-decompose it as

W = [
1√
n
1 U1]︸ ︷︷ ︸
U

[
1 0
0 Λ1

]
︸ ︷︷ ︸

Λ

[ 1√
n
1T

UT
1

]
︸ ︷︷ ︸

UT

(34)

where U is the orthonormal matrix, and Λ1 = diag{λ2, · · · , λn} is a diagonal matrix. With (34), we have

∥(I −W )(xm − x̄m)∥2 = ∥U(I − Λ)UT (xm − x̄m)∥2

(a)
= ∥(I − Λ)UT (xm − x̄m)∥2

(b)
= ∥(I − Λ1)U

T
1 (xm − x̄m)∥2

≥ (1− λ2)
2∥UT

1 (xm − x̄m)∥2

(c)
= (1− λ2)

2∥UT (xm − x̄m)∥2

(d)
= (1− λ2)

2∥xm − x̄m∥2 (35)

where (a) and (d) hold because U is orthonormal, and (b) and (c) hold because ∥UT (xm− x̄m)∥2
(34)
= ∥ 1√

n
1T (xm− x̄m)∥2+

∥UT
1 (xm − x̄m)∥2 = ∥UT

1 (xm − x̄m)∥2. With (33) and (35), we have

(1− β)(1− λ2)∥xm − x̄m∥ ≤ (1− β)∥(I −W )(xm − x̄m)∥
= γ∥W∇f(xm)∥
(20)
≤ γ∥∇f(xm)∥
≤ γ∥∇f(xm)−∇f(x̄m)∥+ γ∥∇f(x̄m)−∇f(x⋆)∥+ γ∥∇f(x⋆)∥
≤ γL∥xm − x̄m∥+

√
nγL∥x̄m − x⋆∥+

√
nγb (36)

where x⋆ is the global solution to problem (1), x̄m = 1
n1

Txm, and b2 = 1
n

∑n
i=1 ∥∇fi(x⋆)∥2.

Bound of ∥x̄m−x⋆∥. Left-multiplying 1
n1

T to both sides of (32), we achieve 1
n1

T∇f(xm) = 0. With this fact we have

∥x̄m − x⋆∥ = ∥x̄m − x⋆ − γ
( 1
n
1T∇F (xm)−

1

n
1T∇F (x⋆)

)
∥



= ∥x̄m − x⋆ − γ
( 1
n
1T∇F (x̄m)−

1

n
1T∇F (x⋆)

)
∥+ γ∥ 1

n
1T∇F (xm)−

1

n
1T∇F (x̄m)∥

(a)

≤ (1− γµ

2
)∥x̄m − x⋆∥+ γL√

n
∥xm − x̄m∥ (37)

where (a) holds because 1
n

∑n
i=1 fi(x) is L-smooth and µ-strongly convex (see Assumptions A.1 and A.4). We thus have

√
n∥x̄m − x⋆∥ ≤ 2L

µ
∥xm − x̄m∥. (38)

Proof of Proposition 2. Substituting (38) to (36), we achieve

(1− β)(1− λ2)∥xm − x̄m∥ ≤
(
γL+

2γL2

µ

)
∥xm − x̄m∥+

√
nγb

≤ 3γL2

µ
∥xm − x̄m∥+

√
nγb (39)

If γ ≤ µ(1−β)(1−λ)
6L2 , the above inequality becomes

∥xm − x̄m∥ ≤
2
√
nγb

(1− β)(1− λ2)
. (40)

With (38) and (40), we have

∥xm − x⋆∥ ≤ ∥xm − x̄m∥+
√
n∥x̄m − x⋆∥ ≤ (1 +

2L

µ
)

2
√
nγb

(1− β)(1− λ2)
, (41)

which leads to

lim
k→∞

1

n

n∑
i=1

∥x(k)
i − x⋆∥2 =

1

n
∥xm − x⋆∥2 (41)

= O
( γ2b2

(1− β)2

)
. (42)

This concludes the proof of Proposition 2.

C.3. Inconsistency bias of DecentLaM (Proof of Proposition 3)

We let xL be the fixed point of the DecentLaM iterate x(k), i.e., x(k) → xL. From DecentLaM recursion (29), we have

(I −W )xL = −γW∇f(xL). (43)

By following the arguments in (33)–(42), we can prove Proposition 3.

D. Fundamental Supporting Lemmas
In this section, we establish some key lemmas to facilitate the convergence analysis in Appendices E and F. This section

assumes the weight matrix W to be positive-definite to simplify the derivations.
Define F(s) = f(W

1
2 s) + 1

2γ ∥s∥
2
I−W and let x = W

1
2 s. It follows from the chain rule that:

∇sF(s, ξ) = W
1
2∇F (x, ξ) +

1

γ
(I −W )W− 1

2x = W− 1
2 g̃. (44)

where g̃ = 1
γx−

1
γW (x− γ∇F (x, ξ)). Substituting (44) and x = W

1
2 s into (17) and (18), we achieve

m(k+1) = βm(k) +W
1
2∇sF(s(k), ξ(k)) (45)

W
1
2 s(k+1) = W

1
2 s(k) − γm(k+1). (46)



If we introduce m
(k+1)
s = (1− β)W− 1

2m(k+1), the above recursions (45) and (46) are equivalent to

m(k+1)
s = βm(k)

s + (1− β)∇sF(s(k), ξ(k)) (47)

s(k+1) = s(k) − γ

1− β
m(k+1)

s (48)

The new recursions (47) and (48) imply that DecentLaM (16)–(18) can be interpreted as the standard momentum stochastic
gradient descent method to solve the optimization problem mins F(s). Such interpretation will be critical to establish the
convergence analysis for DecentLaM. To proceed, we need to characterize the smoothness and strong convexity of F(s).

Lemma 1. a. If fi is L-smooth (1 ≤ i ≤ n), then F(s) is L′ ≜ L+ 1
γ (1− λn)-smooth with respect to s.

b. If fi is µ-strongly convex (1 ≤ i ≤ n), then F(s) is µ′ ≜ min{µ, 1
γ }-strongly convex with respect to s.

Proof. Since fi (1 ≤ i ≤ n) are L-smooth, it holds that f(x) is also L-smooth in terms of x. With transformations x = W
1
2 s

and x′ = W
1
2 s′, we have

F(s′)−F(s)− ⟨∇sF(s), s′ − s⟩

=
(
f(W

1
2 s′)− f(W

1
2 s)− ⟨W 1

2 (∇xf(W
1
2 s)−∇x′f(W

1
2 s′)), s′ − s⟩

)
+

1

γ

(
1

2
∥s′∥2I−W −

1

2
∥s∥2I−W − ⟨(I −W )s, s′ − s⟩

)
=
(
f(W

1
2 s′)− f(W

1
2 s)− ⟨(∇xf(W

1
2 s)−∇x′f(W

1
2 s′)),W

1
2 s′ −W

1
2 s⟩
)
+

1

2γ
∥s′ − s∥2I−W

≤L

2
∥W 1

2 s′ −W
1
2 s∥2 + 1

2γ
∥s′ − s∥2I−W

≤L′

2
∥s′ − s∥2

which leads to the conclusion that F(s) is L′-smooth.
Similarly, since fi (1 ≤ i ≤ n) is µ-strongly convex, it holds that f(x) is also µ-strongly convex in terms of x. We have

F(s′)−F(s)− ⟨∇sF(s), s′ − s⟩

=
(
f(W

1
2 s′)− f(W

1
2 s)− ⟨(∇xf(W

1
2 s)−∇x′f(W

1
2 s′)),W

1
2 s′ −W

1
2 s⟩
)
+

1

2γ
∥s′ − s∥2I−W

≥µ

2
∥W 1

2 s′ −W
1
2 s∥2 + 1

2γ
∥s′ − s∥2I−W

=
µ

2
∥s′ − s∥2W +

1

2γ
∥s′ − s∥2I−W

≥µ′

2
∥s′ − s∥2

We notice from (47) that, without loss of generality, if m(0) = 0, i.e. m(0)
s = 0, then m

(k+1)
s can be calculated by

m(k+1)
s = (1− β)

k∑
i=0

βk−i∇sF(s(i), ξ(i)). (49)

For notation simplicity, we define g̃
(k)
s = ∇sF(s(k), ξ(k)) and g

(k)
s = ∇sF(s(k)) = Eξ(k)∇F(s(k), ξ(k)). The following

lemma establishes the variance of m(k+1)
s .

Lemma 2. Under assumption A.2., the momentum vector m(k+1)
s satisfies

E

∥∥∥∥∥m(k+1)
s − (1− β)

k∑
i=0

βk−ig(i)
s

∥∥∥∥∥
2
 ≤ 1− β

1 + β
(1− β2(k+1))nσ2. (50)



Proof. Since m
(k+1)
s = (1− β)

k∑
i=0

βk−ig̃
(i)
s , we have

E

∥∥∥∥∥m(k+1)
s − (1− β)

k∑
i=0

βk−ig(i)
s

∥∥∥∥∥
2
 = (1− β)2E

∥∥∥∥∥
k∑

i=0

βk−i
(
g̃(i)
s − g(i)

s

)∥∥∥∥∥
2


= (1− β)2E

 k∑
i=0

k∑
j=0

〈
βk−i

(
g̃(i)
s − g(i)

s

)
, βk−j

(
g̃(j)
s − g(j)

s

)〉
= (1− β)2

k∑
i=0

β2(k−i)Eξ(i)

[∥∥∥g̃(i)
s − g(i)

s

∥∥∥2]
(51)

where the last equality holds because of the independence between ξ(0), ξ(1), . . . , ξ(k) (see Assumption A.2). Since Assump-
tion A.2 implies E

[
∥∇F (x, ξ)−∇f(x)∥2

]
≤ nσ2, we have

E
[∥∥∥g̃(i)

s − g(i)
s

∥∥∥2] = E
[∥∥∥∇sF(s(k), ξ(k))−∇sF(s(k))

∥∥∥2] (44)
= E

[∥∥∥∇F (x(k), ξ(k))−∇f(x(k))
∥∥∥2
W

]
≤ nσ2.

Combining the above inequality with (51), we achieve the result.

The next lemma examines the distance between the expectation of m(k+1)
s (scaled by 1/(1− βk+1)) and the real descent

gradient g(k)
s .

Lemma 3. Under assumption A.1, we have

E

∥∥∥∥∥ 1− β

1− βk+1

k∑
i=0

βk−ig(i)
s − g(k)

s

∥∥∥∥∥
2
 ≤ k−1∑

i=0

ak,iE
[∥∥∥s(i+1) − s(i)

∥∥∥2] (52)

where ak,i =
(L′)2βk−i

1−βk+1

(
k − i+ β

1−β

)
.

Proof. We have

E

∥∥∥∥∥ 1− β

1− βk+1

k∑
i=0

βk−ig(i)
s − g(k)

s

∥∥∥∥∥
2


=

(
1− β

1− βk+1

)2 k∑
i,j=0

E
[〈

βk−i
(
g(i)
s − g(k)

s

)
, βk−j

(
g(j)
s − g(k)

s

)〉]
(a)

≤
(

1− β

1− βk+1

)2 k∑
i,j=0

β2k−i−j

(
1

2
E
[∥∥∥g(i)

s − g(k)
s

∥∥∥2]+ 1

2
E
[∥∥∥g(j)

s − g(k)
s

∥∥∥2])

=

(
1− β

1− βk+1

)2 k∑
j=0

(
k∑

i=0

β2k−i−j

)
E
[∥∥∥g(i)

s − g(k)
s

∥∥∥2]

=

(
1− β

1− βk+1

)2 k∑
i=0

βk−i
(
1− βk+1

)
1− β

E
[∥∥∥g(j)

s − g(k)
s

∥∥∥2]

=
1− β

1− βk+1

k∑
i=0

βk−iE
[∥∥∥g(i)

s − g(k)
s

∥∥∥2]
where we have used the Cauchy-Schwarz inequality in (a).



By applying the triangle inequality and Lemma 1, we obtain

E

∥∥∥∥∥ 1− β

1− βk+1

k∑
i=0

βk−ig(i)
s − g(k)

s

∥∥∥∥∥
2


≤ 1− β

1− βk+1

k∑
i=0

βk−i(k − i)

k−1∑
j=i

E
[∥∥∥g(j+1)

s − g(j)
s

∥∥∥2]

≤ 1− β

1− βk+1

k∑
i=0

βk−i(k − i)

k−1∑
j=i

(L′)2E
[∥∥∥s(j+1) − s(j)

∥∥∥2]

=
1− β

1− βk+1

k−1∑
j=0

(
j∑

i=0

βk−i(k − i)

)
(L′)2E

[∥∥∥s(j+1) − s(j)
∥∥∥2] .

.

Furthermore, it can be shown that

1− β

1− βk+1

j∑
i=0

βk−i(k − i)(L′)2 ≤ (L′)2βk−j

1− βk+1
(k − j +

β

1− β
) ≜ ak,j .

which completes the proof.

Next we introduce a key Lyapunov function, which is inspired by [31]:

Lk = F
(
t(k)
)
−F⋆ +

k−1∑
i=0

ci∥s(k−i) − s(k−1−i)∥2 (53)

where ci are positive constants to be specified later, F⋆ = minF(s), and t(k) is an auxiliary sequence defined as

t(k) =

{
s(0) k = 0,
1

1−β s
(k) − β

1−β s
(k−1) k ≥ 1.

(54)

The introduction of t(k) is inspired from [56]. It is delicately designed to enjoy the following property:

Lemma 4. t(k) defined in (54) satisfies
t(k+1) = t(k) − γ

1− β
g̃(k)
s . (55)

Proof. We prove this by direct calculation. When k = 1,

t(1) − t(0) =
1

1− β
s(1) − β

1− β
s(0) − s(0) =

1

1− β

(
s(1) − s(0)

)
= − γ

1− β
g̃(0)
s .

For k ≥ 1, we have

tk+1 − tk =
1

1− β

(
s(k+1) − s(k)

)
− β

1− β

(
s(k) − s(k−1)

)
=

1

1− β

(
− γ

1− β
m(k+1)

s

)
− β

1− β

(
− γ

1− β
m(k)

s

)
= − γ

1− β

(
1

1− β
m(k+1)

s − β

1− β
m(k)

s

)
= − γ

1− β
g̃(k)
s

Finally, we establish the following descent lemma in terms of E
[
F
(
t(k)
)]

, which plays a critical role in both proofs of
the strongly convex scenario and non-convex scenario.



Lemma 5. Under Assumption A.1-A.3, it holds that

E
[
F
(
t(k+1)

)]
≤E

[
F
(
t(k)
)]

+

(
− γ

1− β
+

2β2 − β + 3

2(1− β)
L′ γ2

(1− β)2

)
E
[∥∥∥g(k)

s

∥∥∥2]

+
β2 + β + 1

2(1 + β)
L′ γ2

(1− β)2
nσ2 +

(
1− βk+1

)2
L′γ2

(1− β)3
E

∥∥∥∥∥ 1− β

1− βk+1

k∑
i=0

βk−ig(i)
s − g(k)

s

∥∥∥∥∥
2
 (56)

Proof. Since F(s) is L′-smooth, it holds that

Eξ(k)

[
F
(
t(k+1)

)]
≤ F

(
t(k)
)
+ Eξ(k)

[〈
∇F

(
t(k)
)
, t(k+1) − t(k)

〉]
+

L′

2
Eξ(k)

[∥∥∥t(k+1) − t(k)
∥∥∥2]

(55)
= F

(
t(k)
)
+ Eξ(k)

[〈
∇F

(
t(k)
)
,− γ

1− β
g̃(k)
s

〉]
+

L′γ2

2(1− β)2
Eξ(k)

[∥∥∥g̃(k)
s

∥∥∥2] (57)

Note that t(k) is determined by previous k random samples ξ0, . . . , ξ(k−1) which are independent of ξ(k) and Eξ(k)

[
g̃
(k)
s

]
=

g
(k)
s . Taking expectations over all historical ξ’s, we reach

E
[〈
∇F

(
t(k)
)
,− γ

1− β
g̃(k)
s

〉]
= E

[〈
∇F

(
tk
)
− g(k)

s ,− γ

1− β
g(k)
s

〉]
− γ

1− β
E
[∥∥∥g(k)

s

∥∥∥2]
(a)

≤ γ

1− β

ρ0
2
(L′)2E

[∥∥∥t(k) − s(k)
∥∥∥2]+ γ

1− β

1

2ρ0
E
[∥∥∥g(k)

s

∥∥∥2]− γ

1− β
E
[∥∥∥g(k)

s

∥∥∥2]
(b)

≤ (1− β)L′

4
E
[∥∥∥t(k) − s(k)

∥∥∥2]+ γ2L′

(1− β)3
E
[∥∥∥g(k)

s

∥∥∥2]− γ

1− β
E
[∥∥∥g(k)

s

∥∥∥2]
where (a) holds because of the Cauchy’s inequality ⟨x, y⟩ ≤ a

2∥x∥
2 + 1

2a∥y∥
2 for any vector x, y and positive constant a,

and (b) holds by letting ρ0 = (1−β)2

2L′γ . Combining (57) and the above inequality, we arrive at

E
[
F
(
t(k+1)

)]
≤ E

[
F
(
t(k)
)]
+
(1−β)L′

4
E
[∥∥tk−sk

∥∥2]+ γ

1− β

(
L′γ

(1− β)2
−1

)
E
[∥∥∥g(k)

s

∥∥∥2]+ L′γ2

2(1− β)2
E
[∥∥∥g̃(k)

s

∥∥∥2]
Substituting (48) into (55), we achieve

t(k) − s(k) = − γβ

(1− β)2
m(k)

s (58)

Consequently, we have

E
[
F
(
t(k+1)

)]
≤E

[
F
(
t(k)
)]

+
L′γ2β2

4(1− β)3
E
[∥∥∥m(k)

s

∥∥∥2]+ γ

1− β

(
L′γ

(1− β)2
−1
)
E
[∥∥∥g(k)

s

∥∥∥2]+ L′γ2

2(1− β)2
E
[∥∥∥g̃(k)

s

∥∥∥2]
(59)

On the other hand, we know form Lemma 2 that

E
[∥∥∥m(k)

s

∥∥∥2] ≤ 2E

∥∥∥∥∥m(k)
s − (1− β)

k−1∑
i=0

βk−1−ig(i)
s

∥∥∥∥∥
2
+ 2E

∥∥∥∥∥(1− β)

k−1∑
i=0

βk−1−ig(i)
s

∥∥∥∥∥
2


≤ 2
1− β

1 + β
nσ2 + 2E

∥∥∥∥∥(1− β)

k−1∑
i=0

βk−1−ig(i)
s

∥∥∥∥∥
2


E

∥∥∥∥∥ 1− β

1− βk

k−1∑
i=0

βk−1−ig(i)
s

∥∥∥∥∥
2
 ≤ 2E

[∥∥∥g(k)
s

∥∥∥2]+ 2E

∥∥∥∥∥ 1− β

1− βk

k−1∑
i=0

βk−1−ig(i)
s − g(k)

s

∥∥∥∥∥
2


E
[∥∥∥g̃(k)

s

∥∥∥2] ≤ nσ2 + E
[∥∥∥g(k)

s

∥∥∥2] .

(60)



Substituting these inequalities into (59), we arrive at

E
[
F
(
t(k+1)

)]
≤E

[
F
(
t(k)
)]

+

(
γ

1− β

(
L′γ

(1− β)2
− 1

)
+

L′γ2β2

(1− β)3
(
1− βk

)2
+

L′γ2

2(1− β)2

)
E
[∥∥∥g(k)

s

∥∥∥2]
+

(
L′γ2β2

2(1− β)3
1− β

1 + β
nσ2 +

L′γ2

2(1− β)2
nσ2

)

+
L′γ2β2

(1− β)3
(
1− βk

)2 E
∥∥∥∥∥ 1− β

1− βk

k−1∑
i=0

βk−1−ig(i)
s − g(k)

s

∥∥∥∥∥
2
 .

Substituting

E

∥∥∥∥∥ 1− β

1− βk+1

k∑
i=0

βk−ig(i)
s − g(k)

s

∥∥∥∥∥
2
 = E

∥∥∥∥∥ 1− β

1− βk+1
β

k−1∑
i=0

βk−1−ig(i)
s −

1− βk

1− βk+1
βg(k)

s

∥∥∥∥∥
2


= β2

(
1− βk

1− βk+1

)2

E

∥∥∥∥∥ 1− β

1− βk

k−1∑
i=0

βk−1−ig(i)
s − g(k)

s

∥∥∥∥∥
2


into the last inequality produces

E
[
F
(
t(k+1)

)]
≤E

[
F
(
t(k)
)]

+

(
− γ

1− β
+

L′γ2(−β + 3)

2(1− β)3
+

L′γ2β2

(1− β)3
(
1− βk

)2)E
[∥∥∥g(k)

s

∥∥∥2]
+

(
L′γ2

2(1− β)2
β2

1 + β
nσ2 +

L′γ2

2(1− β)2
nσ2

)

+
L′γ2

(1− β)3
(
1− βk+1

)2 E
∥∥∥∥∥ 1− β

1− βk+1

k∑
i=0

βk−1−ig(i)
s − g(k)

s

∥∥∥∥∥
2
 .

(61)

Finally, using 1− βk < 1 leads to the conclusion.

E. Convergence analysis for strongly-convex scenario

Proposition 4. Under Assumptions A.1-A.4 and W is positive-definite, there exists positive constants ci for (53) such that

for all γ = O
(
min

{
(1−β)2

2
√
3L′ ,

(1−β)2

6
√
βL′

(
3−β+2β2+8

(
1+

13µ′/L′
2(1+6µ′/L′)

))}) and k ≥ ⌊ log(0.5)log(β) ⌋, it holds that

E
[
Lk+1 − Lk

]
≤− γµ

(1 + 6µ′

L′ )(1− β)
E
[
Lk
]
+

(
1 + β + β2

2(1 + β)
L′ +

1− β

1 + β
2c0

)
γ2

(1− β)2
nσ2

+
β2 + L′γ

2
β2

(1−β)2(
1 + 6µ′

L′

)
(1 + β)

2µ′γ2nσ2

(1− β)2
.

(62)

where Lk is defined in (53).

Proof. We first derive a lower bound for the gradient norm. Following the strong convexity of F , we have

E
[∥∥∥g(k)

s

∥∥∥2] = E
[∥∥∥∇F (s(k))∥∥∥2] ≥ 2µ′E

[
F
(
s(k)
)
−F⋆

]
. (63)



Since F is L-smooth, we have

E
[
F
(
t(k)
)]
≤E

[
F
(
s(k)
)]

+ E
[〈

g(k)
s , t(k) − s(k)

〉]
+

L′

2
E
[∥∥∥t(k) − s(k)

∥∥∥2]
(58)
=E

[
F
(
s(k)
)]

+ E

[〈
g(k)
s − 1− β

1− βk+1

k∑
i=0

βk−ig(i)
s +

1− β

1− βk+1

k∑
i=0

βk−ig(i)
s ,− γβ

(1− β)2
m(k)

s

〉]

+
L′

2
E

[∥∥∥∥ γβ

(1− β)2
m(k)

s

∥∥∥∥2
]

(a)

≤E
[
F
(
s(k)
)]

+
γ

2(1− β)
ρE

∥∥∥∥∥g(k)
s − 1− β

1− βk+1

k∑
i=0

βk−ig(i)
s

∥∥∥∥∥
2
+

γ

2(1− β)ρ
E

[∥∥∥∥ β

1− β
m(k)

s

∥∥∥∥2
]

+ E

[〈
1− β

1− βk+1

k∑
i=0

βk−ig(i)
s ,− γβ

(1− β)2
m(k)

s

〉]
+

L′

2
E

[∥∥∥∥ γβ

(1− β)2
m(k)

s

∥∥∥∥2
]

(b)

≤E
[
F
(
s(k)
)]

+
γ

2(1− β)
ρE

∥∥∥∥∥g(k)
s − 1− β

1− βk+1

k∑
i=0

βk−ig(i)
s

∥∥∥∥∥
2


+

(
γ

2(1− β)ρ

(
β

1− β

)2

+
L′γ2

2(1− β)2

(
β

1− β

)2
)
E
[∥∥∥m(k)

s

∥∥∥2]

+
γβ

(1− β)2

ρ1
2
E

∥∥∥∥∥ 1− β

1− βk+1

k∑
i=0

βk−ig(i)
s

∥∥∥∥∥
2
+

1

2ρ1
E
[∥∥∥m(k)

s

∥∥∥2]


(c)
=E

[
F
(
s(k)
)]

+
γ

2(1− β)2
E

∥∥∥∥∥g(k)
s − 1− β

1− βk+1

k∑
i=0

βk−ig(i)
s

∥∥∥∥∥
2


+

(
γβ2

(1− β)2
+

L′γ2

2

β2

(1− β)4

)
E
[∥∥∥m(k)

s

∥∥∥2]

+
γ

2(1− β)2
E

∥∥∥∥∥ 1− β

1− βk+1

k∑
i=0

βk−ig(i)
s

∥∥∥∥∥
2
 ,

where (a) and (b) hold because of the Cauchy’s inequality, and (c) holds by letting ρ = 1
1−β , ρ1 = 1

β , respectively. Combining
the above inequality with (63), we have

E
[∥∥∥g(k)

s

∥∥∥2] ≥2µ′

(
E
[
F
(
t(k)
)]
−F⋆ − γ

2(1− β)2
E

∥∥∥∥∥g(k)
s − 1− β

1− βk+1

k∑
i=0

βk−ig(i)
s

∥∥∥∥∥
2


−
(

γβ2

(1− β)2
+

L′γ2

2

β2

(1− β)4

)
E
[∥∥∥m(k)

s

∥∥∥2]

− γ

2(1− β)2
E

∥∥∥∥∥ 1− β

1− βk+1

k∑
i=0

βk−ig(i)
s

∥∥∥∥∥
2
).

(64)



Following (60), we have

E
[∥∥∥m(k)

s

∥∥∥2]

≤21− β

1 + β
nσ2 + 2

(
1− βk

)22E
[∥∥∥g(k)

s

∥∥∥2]+ 2E

∥∥∥∥∥ 1− β

1− βk

k−1∑
i=0

βk−1−ig(i)
s − g(k)

s

∥∥∥∥∥
2


=2
1− β

1 + β
nσ2 + 4

(
1− βk

)2 E [∥∥∥g(k)
s

∥∥∥2]+ 4

β2
(1− βk+1)2E

∥∥∥∥∥ 1− β

1− βk+1

k∑
i=0

βk−ig(i)
s − g(k)

s

∥∥∥∥∥
2


and

E

∥∥∥∥∥ 1− β

1− βk+1

k∑
i=0

βk−ig(i)
s

∥∥∥∥∥
2
 ≤ 2E

[∥∥∥g(k)
s

∥∥∥2]+ 2E

∥∥∥∥∥ 1− β

1− βk+1

k∑
i=0

βk−ig(i)
s − g(k)

s

∥∥∥∥∥
2
 .

Substituting the above two inequalities into (64) and rearranging terms, we have

[
1 + 2µ′

((
γβ2

(1− β)2
+

L′γ2

2

β2

(1− β)4

)
4
(
1− βk

)2
+

γ

(1− β)2

)]
E
[∥∥∥g(k)

s

∥∥∥2]

≥2µ′

(
E
[
F
(
t(k)
)]
−F⋆ − γ

2(1− β)2
E

∥∥∥∥∥g(k)
s − 1− β

1− βk+1

k∑
i=0

βk−ig(i)
s

∥∥∥∥∥
2


−
(

γβ2

(1− β)2
+

L′γ2

2

β2

(1− β)4

)

×

2
1− β

1 + β
nσ2 +

4

β2

(
1− βk+1

)2 E
∥∥∥∥∥ 1− β

1− βk+1

k∑
i=0

βk−ig(i)
s − g(k)

s

∥∥∥∥∥
2


− γ

(1− β)2
E

∥∥∥∥∥ 1− β

1− βk+1

k∑
i=0

βk−ig(i)
s − g(k)

s

∥∥∥∥∥
2
)

=2µ′

(
E
[
F
(
t(k)
)]
−F⋆

−
(

γβ2

(1− β)2
+

L′γ2

2

β2

(1− β)4

)
2
1− β

1 + β
nσ2

−
(

3γ

2(1− β)2
+

(
γ

(1− β)2
+

L′γ2

2(1− β)4

)
4(1− βk+1)2

)

× E

∥∥∥∥∥ 1− β

1− βk+1

k∑
i=0

βk−ig(i)
s − g(k)

s

∥∥∥∥∥
2
).

(65)

When γ ≤ (1−β)2

2L′ , it holds that

1 + 2µ′
((

γβ2

(1− β)2
+

L′γ2

2

β2

(1− β)4

)
4
(
1− βk

)2
+

γ

(1− β)2

)
≤ 1 + 6

µ′

L′



which leads to (
1 + 6

µ′

L′

)
E
[∥∥∥g(k)

s

∥∥∥2]
≥2µ′

(
E
[
F
(
t(k)
)]
−F⋆

−
(

γβ2

(1− β)2
+

L′γ2

2

β2

(1− β)4

)
2
1− β

1 + β
nσ2

−
(

3γ

2(1− β)2
+

(
γ

(1− β)2
+

L′γ2

2(1− β)4

)
4(1− βk+1)2

)

× E

∥∥∥∥∥ 1− β

1− βk+1

k∑
i=0

βk−ig(i)
s − g(k)

s

∥∥∥∥∥
2
).

(66)

On the other hand, by Lemma 5, we have

E
[
Lk+1

]
≤E

[
Lk
]
+

(
− γ

1− β
+

2β2 − β + 3

2(1− β)
L′ γ2

(1− β)2

)
E
[∥∥∥g(k)

s

∥∥∥2]

+
β2 + β + 1

2(1 + β)

L′γ2

(1− β)2
nσ2 +

(
1− βk+1

)2
L′γ2

(1− β)3
E

∥∥∥∥∥ 1− β

1− βk+1

k∑
i=0

βk−ig(i)
s − g(k)

s

∥∥∥∥∥
2


+

k−1∑
i=0

(ci+1 − ci)∥s(k−i) − s(k−1−i)∥2 + c0∥s(k+1) − s(k)∥2.

(67)

Note that c0∥s(k+1) − s(k)∥2 can be bounded by

c0E
[∥∥∥s(k+1) − s(k)

∥∥∥2] = c0
γ2

(1− β)2
E
[∥∥∥m(k+1)

s

∥∥∥2]
(60)
≤ c0

γ2

(1− β)2

(
2
1− β

1 + β
nσ2 + 4E

[∥∥∥g(k)
s

∥∥∥2])+ 4c0
γ2

(1− β)2
(
1− βk+1

)2 E
∥∥∥∥∥ 1− β

1− βk+1

k∑
i=0

βk−ig(i)
s − g(k)

s

∥∥∥∥∥
2
 .

Combining the above inequality with (67), we obtain

E
[
Lk+1 − Lk

]
≤
(
− γ

1− β
+

3− β + 2β2

2(1− β)

L′γ2

(1− β)2
+ 4c0

γ2

(1− β)2

)
E
[∥∥∥g(k)

s

∥∥∥2]
+

(
β2 + β + 1

2(1 + β)

L′γ2

(1− β)2
nσ2 + 2c0

γ2

1− β2
nσ2

)
+

k−1∑
i=0

(ci+1 − ci)E
[∥∥∥s(k−i) − s(k−i−1)

∥∥∥2]

+

(
4c0

γ2

(1− β)2
+

L′γ2

(1− β)3

)(
1− βk+1

)2 E
∥∥∥∥∥ 1− β

1− βk+1

k∑
i=0

βk−ig(i)
s − g(k)

s

∥∥∥∥∥
2
 .

(68)

Suppose γ is sufficiently small such that

− γ

1− β
+

3− β + 2β2

2(1− β)

L′γ2

(1− β)2
+ 4c0

γ2

(1− β)2
≤ − γ

2(1− β)
, (69)



it follows that

E
[
Lk+1 − Lk

]
≤− γ

2(1− β)
E
[∥∥∥g(k)

s

∥∥∥2]
+

(
β2 + β + 1

2(1 + β)

L′γ2

(1− β)2
nσ2 + 2c0

γ2

1− β2
nσ2

)
+

k−1∑
i=0

(ci+1 − ci)E
[∥∥∥s(k−i) − s(k−i−1)

∥∥∥2]

+

(
4c0

γ2

(1− β)2
+

L′γ2

(1− β)3

)(
1− βk+1

)2 E
∥∥∥∥∥ 1− β

1− βk+1

k∑
i=1

βk−ig(i)
s − g(k)

s

∥∥∥∥∥
2
 .

(70)

Substituting (66) into (70), we obtain

E
[
Lk+1 − Lk

]
≤P1E

[
F
(
t(k)
)
−F⋆

]
+ P2

+ P3E

∥∥∥∥∥ 1− β

1− βk+1

k∑
i=0

βk−ig(i)
s − g(k)

s

∥∥∥∥∥
2
+

k−1∑
i=0

(ci+1 − ci)E
[∥∥∥s(k−i) − s(k−1−i)

∥∥∥2] (71)

with

P1 =− γµ′

(1− β)(1 + 6µ′

L′ )
,

P2 =
β2 + β + 1

2(1 + β)

L′γ2

(1− β)2
nσ2 + 2c0

γ2

1− β2
nσ2 +

γµ′
(

γβ2

1−β2 + L′γ2β2

2(1−β)3(1+β)

)
2nσ2

(1− β)(1 + 6µ′

L′ )
,

P3 =4c0
γ2

(1− β)2
+

L′γ2

(1− β)3
+

γµ′
(

3γ
2(1−β)2 + 4

(
γ

(1−β)2 + L′γ2

2(1−β)4

))
(1− β)(1 + 6µ′

L′ )
.

(72)

By Lemma 3 we know that

E

∥∥∥∥∥ 1− β

1− βk+1

k∑
i=0

βk−ig(i)
s − g(k)

s

∥∥∥∥∥
2
 ≤ k−1∑

i=0

ak,k−1−iE
[∥∥∥s(k−i) − s(k−1−i)

∥∥∥2]

with ak,k−i−1 = (L′)2βi+1

1−βk+1

(
i+ 1 + β

1−β

)
. Substituting the above inequality into (71), we obtain

E
[
Lk+1 − Lk

]
≤ P1E

[
F
(
t(k)
)
−F⋆

]
+ P2 +

k−1∑
i=0

(ci+1 − ci + P3ak,k−i−1)E
[∥∥∥s(k−i) − s(k−1−i)

∥∥∥2] . (73)

If there exists a positive sequence {ci} such that

ci+1 − ci + P3ak,k−i−1 ≤ P1ci, (74)

then inequality (73) becomes

E
[
Lk+1 − Lk

]
≤ P1E

[
Lk
]
+ P2 (75)

which is equivalent to the result in (62). To construct {ci}, we notice that 1
1−βk+1 ≤ 2 when k ≥ ⌊ log(0.5)log(β) ⌋. This implies

ci+1 − ci + P3ak,k−i−1 ≤ ci+1 − ci + P32(L
′)2βi+1

(
i+ 1 +

β

1− β

)
, k ≥ ⌊ log(0.5)

log(β)
⌋.



If we construct {ci} that satisfy

ci+1 − ci + P32(L
′)2βi+1

(
i+ 1 +

β

1− β

)
= P1ci, (76)

then (74) holds. Multiplying 1/(1 + P1)
i+1 to both sides of the above inequality, we have

ci
(1 + P1)i

− ci+1

(1 + P1)i+1
=

P32(L
′)2βi+1

(1 + P1)i+1

(
i+ 1 +

β

1− β

)
. (77)

Summing both sides of the above equality from i = 0 to i =∞, we conclude that as long as c0 satisfies

c0 ≥2(L′)2P3

∞∑
i=0

βi+1

(1 + P1)i+1

(
i+ 1 +

β

1− β

)

(a)
=2(L′)2P3

 β
1+P1(

1− β
1+P1

)2 +

β
1+P1

1− β
1+P1

β

1− β

 ,

(78)

and ci (i ≥ 1) is constructed following recursion (77), we will achieve a positive sequence {ci} that satisfies (74). Note that

we used γ ≤ (1−β)2

2L′ <
(1−β)2

(
1+6 µ′

L′

)
µ′(1+

√
β)

to result in β <
√
β < 1 + P1 in (a) so that the series is summable.

Next we simplify the expression in (78). With γ ≤ (1−β)2

2L′ , we have β <
√
β < 1+P1 and β

1+P1
≤
√
β. These facts lead

to

2(L′)2P3

 β
1+P1(

1− β
1+P1

)2 +

β
1+P1

1− β
1+P1

β

1− β


≤2(L′)2P3

( √
β(

1−
√
β
)2 +

√
β

1−
√
β

β

1− β

)

=2(L′)2

4c0
γ2

(1− β)2
+

L′γ2

(1− β)3
+

γµ′
(

3γ
2(1−β)2 +

(
γ

(1−β)2 + L′γ2

2(1−β)4

)
4
)

(1− β)(1 + 6µ′

L′ )


×

( √
β(

1−
√
β
)2 +

√
β

1−
√
β

β

1− β

)

≤2(L′)2

4c0
γ2

(1− β)2
+

L′γ2

(1− β)3
+

µ′ 13γ2

2(1−β)3

1 + 6µ′

L′

( √
β(

1−
√
β
)2 +

√
β

1−
√
β

β

1− β

)
.

(79)

To guarantee (78), it suffices to let

c0 ≥ 2(L′)2

4c0
γ2

(1− β)2
+

L′γ2

(1− β)3
+

µ′ 13γ2

2(1−β)3

1 + 6µ′

L′

( √
β(

1−
√
β
)2 +

√
β

1−
√
β

β

1− β

)
. (80)

When γ ≤ (1−β)2

2
√
3L′ , it holds that

1− 8
γ2

(1− β)2
(L′)2

( √
β

(1−
√
β)2

+

√
β

1−
√
β

β

1− β

)
≥ 1

2
.

Withe the help of the above inequality, if c0 is constructed as

c0 ≥ 4(L′)2

 L′γ2

(1− β)3
+

µ′ 13γ2

2(1−β)3

1 + 6µ′

L′

( √
β(

1−
√
β
)2 +

√
β

1−
√
β

β

1− β

)
, (81)



and and ci (i ≥ 1) is constructed following recursion (77), we will achieve a positive sequence {ci} that satisfies (74).
Finally we come back to examine the condition on γ that satisfies (69). To guarantee

− γ

1− β
+

3− β + 2β2

2(1− β)

L′γ2

(1− β)2
+ 4c0

γ2

(1− β)2

=− γ

1− β
+

3− β + 2β2

2(1− β)

L′γ2

(1− β)2
+ 4(L′)2

 L′γ2

(1− β)3
+

µ′ 13γ2

2(1−β)3

1 + 6µ′

L′

( √
β(

1−
√
β
)2 +

√
β

1−
√
β

β

1− β

)

≤− γ

2(1− β)
,

it is enough to require

L′γ

(1− β)2

(
3− β + 2β2 + 8

(
1 +

13µ′/L′

2(1 + 6µ′/L′)

))(√
β(1 +

√
β)2 + β

3
2 (1 +

√
β)
)
≤ 1

⇐= L′γ

(1− β)2

(
3− β + 2β2 + 8

(
1 +

13µ′/L′

2(1 + 6µ′/L′)

))
6
√
β ≤ 1

⇐⇒ γ ≤ (1− β)2

6
√
βL′

(
3− β + 2β2 + 8

(
1 + 13µ′/L′

2(1+6µ′/L′)

)) .
In summary, if γ ≤ O

(
min

{ (1−β)2

2
√
3L′ ,

(1−β)2

6
√
βL′

(
3−β+2β2+8

(
1+

13µ′/L′
2(1+6µ′/L′)

))}) = O ( (1−β)2

L′

)
, it holds for k ≥ ⌊ log(0.5)log(β) ⌋ that

E
[
Lk+1 − Lk

]
≤− γµ

(1 + 6µ′

L′ )(1− β)
E
[
Lk
]
+

(
1 + β + β2

2(1 + β)
L′ +

1− β

1 + β
2c0

)
γ2

(1− β)2
nσ2

+
β2 + L′γ

2
β2

(1−β)2(
1 + 6µ′

L′

)
(1 + β)

2µ′γ2nσ2

(1− β)2
.

(82)

E.1. Proof of Theorem 1

With Proposition 4, we are able to prove Theorem 1.

Proof of Theorem 1. From Proposition (4), we know for all k ≥ k0 ≜ ⌊ log(0.5)log(β) ⌋, it holds that

E
[
Lk+1 − Lk

]
≤− γµ′

(1 + 6µ′

L′ )(1− β)
E
[
Lk
]
+

(
1 + β + β2

2(1 + β)
L′ +

1− β

1 + β
2c0

)
γ2

(1− β)2
nσ2

+
β2 + L′γ

2
β2

(1−β)2(
1 + 6µ′

L′

)
(1 + β)

2µ′γ2nσ2

(1− β)2

The above inequality can be rearranged as

E
[
Lk+1

]
≤

(
1− γµ′

(1 + 6µ′

L′ )(1− β)

)
E
[
Lk
]
+

(
1 + β + β2

2(1 + β)
L′ +

1− β

1 + β
2c0

)
γ2

(1− β)2
nσ2

+
β2 + L′γ

2
β2

(1−β)2(
1 + 6µ′

L′

)
(1 + β)

2µ′γ2nσ2

(1− β)2

≤

(
1− γµ′

(1 + 6µ′

L′ )(1− β)

)
E
[
Lk
]
+

(
1 + β + β2

2(1 + β)
L′ +

1− β

1 + β
2c0

)
γ2

(1− β)2
nσ2

+
5β2

2

1 + 6µ′

L′

1

1 + β

µ′γ2nσ2

(1− β)2



in which we used γ ≤ (1−β)2

2L′ in the second inequality. Therefore, we have

E
[
Lk+1

]
−
(
1 +

6µ′

L′

)((
1 + β + β2

2(1 + β)

L′

µ′ +
1− β

1 + β

2c0
µ′

)
γ

1− β
nσ2 +

5β2

2

1 + 6µ′

L′

1

1 + β

µ′γnσ2

1− β

)

≤

(
1− γµ′

(1 + 6µ′

L′ )(1− β)

)
×(

E
[
Lk
]
−
(
1 +

6µ′

L′

)((
1 + β + β2

2(1 + β)

L′

µ′ +
1− β

1 + β

2c0
µ′

)
γ

1− β
nσ2 +

5β2

2

1 + 6µ′

L′

1

1 + β

µ′γnσ2

1− β

))
,

which directly yields

E
[
Lk
]
≤
(
1 +

6µ′

L′

)((
1 + β + β2

2(1 + β)

L′

µ′ +
1− β

1 + β

2c0
µ′

)
γ

1− β
nσ2 +

5β2

2

1 + 6µ′

L′

1

1 + β

µ′γnσ2

1− β

)

+

(
1− γµ′

(1 + 6µ′

L′ )(1− β)

)k−k0

×(
E
[
Lk0
]
−
(
1 +

6µ′

L′

)((
1 + β + β2

2(1 + β)

L′

µ′ +
1− β

1 + β

2c0
µ′

)
γ

1− β
nσ2 +

5β2

2

1 + 6µ′

L′

1

1 + β

µ′γnσ2

1− β

))

≤
(
1 +

6µ′

L′

)((
1 + β + β2

2(1 + β)

L′

µ′ +
1− β

1 + β

2c0
µ′

)
γ

1− β
nσ2 +

5β2

2

1 + 6µ′

L′

1

1 + β

µ′γnσ2

1− β

)

+

(
1− γµ′

(1 + 6µ′

L′ )(1− β)

)k−k0

E
[
Lk0
]
.

Since ci are delicately chosen to be positive, we achieve

E
[
F
(
t(k)
)
−F⋆

]
≤
(
1 +

6µ′

L′

)((
1 + β + β2

2(1 + β)

L′

µ′ +
1− β

1 + β

2c0
µ′

)
γ

1− β
nσ2 +

5β2

2

1 + 6µ′

L′

1

1 + β

µ′γnσ2

1− β

)

+

(
1− γµ′

(1 + 6µ′

L′ )(1− β)

)k−k0

E
[
Lk0
]

=O

(
E
[
Lk0
](

1− µ′γ

1− β

)k

+
γ

1− β
nσ2

)
(83)

where we use the fact in (81) that c0 = O( 1
1−β ) when γ = O( (1−β)2

L′ ).
Now we let xL be the fixed point of the DecentLaM recursion (25) when the full-batch gradient ∇f(x) can be accessed

per iteration. It is known from (43) that

(I −W )W− 1
2xL + γW

1
2∇f(xL) = 0. (84)

Moreover, it is derived from Appendix C.3 that

1

n
E
[
∥xL − x⋆∥2

]
= O(γ2b2) (85)

Next we let sL = argmins F(s). With the definition of F(s) , sL satisfies

W
1
2∇f(W 1

2 sL) +
1

γ
(I −W )sL = 0. (86)



Since F(s) is strongly convex, there is only one root of∇F(s), it is derived from (84) and (86) that

xL = W
1
2 sL. (87)

Now we are ready to establish the convergence rate. Since t(k) = 1
1−β s

(k) − β
1−β s

(k−1), we have

s(k) = (1− β)

k∑
i=1

βk−it(i) + βkt(0)

Since (1− β)
k∑

i=1

βk−i + βk = 1 and F(·) is a convex function, it holds from the Jensen’s inequality that

E
[
F(s(k))−F⋆

]
≤(1− β)

k∑
i=1

βk−iE
[
F(t(i))−F⋆

]
+ βkE

[
F(t(0))−F⋆

]
=O

(
E
[
Lk0
](

1− µ′γ

1− β

)k

+
γ

1− β
nσ2

)
.

(88)

where the last equality holds because of the inequality (83) and β < 1 − γµ′

1−β when γ ≤ (1−β)2

L′ . Therefore, following the
strong convexity of F and (88), we have

1

n
E
[∥∥∥x(k) − xL

∥∥∥2] (87)
=

1

n
E
[∥∥∥s(k) − sL

∥∥∥2
W

]
≤ 2

n
E
[
µ′
(
F(s(k))−F⋆

)]
= O

((
1− µ′γ

1− β

)k

+
γ

1− β
σ2

)
.

(89)

Combining (85) and (89) and note µ′ = µ because γ ≤ 1
µ , we conclude

1

n

n∑
i=1

E
[∥∥∥x(k)

i − x⋆
∥∥∥2] = 1

n
E
[∥∥∥x(k) − x⋆

∥∥∥2]
≤ 2

n
E
[∥∥∥x(k) − xL

∥∥∥2]+ 2

n
E
[
∥xL − x⋆∥2

]
= O

(
(1− γµ

1− β
)k +

γσ2

1− β
+ γ2b2

) (90)

E.2. Proof of Corollary 1

Proof of Corollary 1. In fact, by choosing γ = µ(1−β)
k log(kµσ2 ), we have

1

n

n∑
i=1

E
[∥∥∥x(k)

i − x⋆
∥∥∥2] = O((1− γµ

1− β
)k +

γσ2

1− β
+ γ2b2

)
≤ O

(
e−

kγµ
1−β +

γσ2

1− β
+ γ2b2

)
≤ O

(
σ2

kµ
+

µσ2

k
log(

kµ

σ2
) +

µ2(1− β)2

k2
2 log(

kµ

σ2
)b2
)

= Õ( 1
k
).



F. Convergence analysis for non-convex scenario
Proposition 5. Under Assumptions A.1-A.3 and W is positive-definite, there exists positive constants ci for (53) such that
for all γ < (1−β)2

2
√
2L′
√

β+β2
, it holds that

E
[
Lk+1 − Lk

]
≤
(
− γ

1− β
+

3− β + β2

2(1− β)2
L′γ2 + 4c0

γ2

(1− β)2

)
E
[∥∥∥g(k)

s

∥∥∥2]
+

(
(β2 + β + 1)γ2

2(1 + β)(1− β)2
L′nσ2 + 2c0

γ2

1− β2
nσ2

)
.

(91)

Proof. Following arguments (67)–(68) (note that these arguments do not need convexity of F), we have

E
[
Lk+1 − Lk

]
≤
(
− γ

1− β
+

3− β + 2β2

2(1− β)

L′γ2

(1− β)2
+ 4c0

γ2

(1− β)2

)
E
[∥∥∥g(k)

s

∥∥∥2]
+

(
β2 + β + 1

2(1 + β)
L′ + 2c0

1− β

1 + β

)
γ2nσ2

(1− β)2

+

k−1∑
i=0

(ci+1 − ci)E
[∥∥∥s(k−i) − s(k−i−1)

∥∥∥2]︸ ︷︷ ︸
A

+

(
4c0

γ2

(1− β)2
+

L′γ2

(1− β)3

)(
1− βk+1

)2 E
∥∥∥∥∥ 1− β

1− βk+1

k∑
i=0

βk−ig(i)
s − g(k)

s

∥∥∥∥∥
2


︸ ︷︷ ︸
B

.

(92)

Next we show that the sum of terms A and B can be non-positive by choosing appropriate positive ci. By Lemma 3 we know

E

∥∥∥∥∥ 1− β

1− βk+1

k∑
i=0

βk−ig(i)
s − g(k)

s

∥∥∥∥∥
2
 ≤ k−1∑

i=0

ak,k−1−iE
[∥∥∥s(k−i) − s(k−1−i)

∥∥∥2]

with ak,k−i−1 = (L′)2βi+1

1−βk+1

(
i+ 1 + β

1−β

)
. To achieve A+B ≤ 0, it suffices to let

ci+1 ≤ ci −
(
4c0

γ2

(1− β)2
+

L′γ2

(1− β)3

)(
1− βk+1

)2
ak,k−1−i. (93)

Since (1− βk+1) < 1, we can require for all i ≥ 0 that

ci+1 ≤ ci −
(
4c0

γ2

(1− β)2
+

L′γ2

(1− β)3

)
(L′)2βi+1(i+ 1 +

β

1− β
). (94)

In order to construct positive {ci} to satisfy the above relation, we can choose

c0 =

(
4c0

γ2

(1− β)2
+

L′γ2

(1− β)3

) ∞∑
i=0

βi+1

(
i+ 1 +

β

1− β

)
(L′)2

=

(
4c0

γ2

(1− β)2
+

L′γ2

(1− β)3

)
β + β2

(1− β)2
(L′)2 (95)

This indeed yields

c0 =

β+β2

(1−β)5 γ
2(L′)3

1− 4γ2 β+β2

(1−β)4 (L
′)2

(96)

which is positive when γ < (1−β)2

2L′
√

β+β2
. As a result, if c0 is constructed as in (96), and ci is constructed as in recursion (94)

(replace “≤” with “=”), then all ci’s are positive and the inequality (93) holds, which leads to A + B ≤ 0. Substituting
A+B ≤ 0 into (92), we achieve the result.



F.1. Proof of Theorem 2

With Proposition 5, we are ready to establish Theorem 2.

Proof of Theorem 2. From Proposition 5, we know that

E
[
Lk+1 − Lk

]
≤ −Q1E

[∥∥∥g(k)
s

∥∥∥2]+Q2 (97)

with

Q1 =
γ

1− β
− 3− β + β2

2(1− β)2
L′γ2 − 4c0

γ2

(1− β)2
(98)

Q2 =
(β2 + β + 1)γ2

2(1 + β)(1− β)2
L′nσ2 + 2c0

γ2

1− β2
nσ2. (99)

This immediately yields that

Q1

T−1∑
k=0

E
[∥∥∥g(k)

s

∥∥∥2] ≤ E
[
L0 − LT

]
+ TQ2 ≤ L0 + TQ2

and hence
1

T

T−1∑
k=0

E
[∥∥∥g(k)

s

∥∥∥2] ≤ L0

TQ1
+

Q2

Q1
. (100)

Next we bound Q1 and Q2 properly. Note that

Q1 ≥
γ

2(1− β)
⇐⇒ γ

1− β
− 3− β + β2

2(1− β)2
L′γ2 − 4c0

γ2

(1− β)2
≥ γ

2(1− β)

⇐⇒ 1− β ≥ (3− β + β2)L′γ + 8c0γ.

(101)

With the expression in (96), when γ ≤ (1−β)2

2
√
2L′
√

β+β2
, we have

c0 ≤ 2
β + β2

(1− β)5
γ2(L′)3 ≤ L′

4(1− β)
.

According to (101), to achieve Q1 ≥ γ
2(1−β) , it suffices to let

1− β ≥ (3− β + β2)L′γ +
2

1− β
L′γ

⇐⇒ γ ≤ (1− β)2

(2 + (1− β)(3− β + 2β2))L′ .

(102)

As to Q2, note that

Q2 =
(β2 + β + 1)γ2

2(1 + β)(1− β)2
L′nσ2 + 2c0

γ2

1− β2
nσ2

≤ (β2 + β + 1)γ2

2(1 + β)(1− β)2
L′nσ2 +

L′

2(1− β)

γ2

1− β2
nσ2

(103)

Therefore, we have

Q2

Q1
≤ (β2 + β + 1)γ

1− β2
L′nσ2 +

L′γ

1− β2
nσ2 = O(L

′γnσ2

1− β
). (104)



To summarize, as long as γ < min{ (1−β)2

2
√
2L′
√

β+β2
, (1−β)2

(2+(1−β)(3−β+2β2))L′ } = O
(

(1−β)2

L′

)
, it holds that

1

T

T−1∑
k=0

E
[∥∥∥g(k)

s

∥∥∥2] = O( (1− β)L0

γT
+

L′γnσ2

1− β
). (105)

On the other hand, recall the definition of g(k)
s , we have

W
1
2g(k)

s = W∇f(x(k)) +
1

γ
(I −W )x(k). (106)

where x(k) = W
1
2 s(k). Since W1 = 1 and W is positive-definite, it holds that W

1
2 is also positive-definite and W

1
21 = 1.

Taking global average over both sides of (106), we reach

1

n
1Tg(k)

s =
1

n

n∑
i=1

∇fi(x(k)
i ). (107)

Substituting (I −W )x̄(k) = 0 into (106), we have

1

γ
(I −W )(x(k) − x̄(k)) = W∇f(x(k))−W

1
2g(k)

s , (108)

which implies that

1− λ2

γ
∥x(k) − x̄(k)∥ ≤ ∥W∇f(x(k))∥+ ∥W 1

2g(k)
s ∥

≤ ∥∇f(x(k))∥+ ∥g(k)
s ∥, (109)

where the first inequality holds by following arguments in (35). By taking expectation over the square of both sides, we
achieve

(1− λ2)
2

γ2
E∥x(k) − x̄(k)∥2 ≤ 2E∥∇f(x(k))∥2 + 2E∥g(k)

s ∥2. (110)

Note that

E
[∥∥∥∇f(x(k))

∥∥∥2] = n∑
i=1

E
[∥∥∥∇fi(x(k)

i )
∥∥∥2]

=

n∑
i=1

E
[∥∥∥∇fi(x(k)

i )−∇fi(x̄(k)) +∇fi(x̄(k))−∇f(x̄(k)) +∇f(x̄(k))
∥∥∥2]

≤ 3L2E
[∥∥∥x(k) − x̄(k)

∥∥∥2]+ 3

n∑
i=1

E
[∥∥∥∇fi(x̄(k))−∇f(x̄(k))

∥∥∥2]+ 3nE
[∥∥∥∇f(x̄(k))

∥∥∥2]

≤ 3L2E
[∥∥∥x(k) − x̄(k)

∥∥∥2]+ 3nb̂2 + 3nE

∥∥∥∥∥ 1n
n∑

i=1

∇fi(x̄(k))

∥∥∥∥∥
2
 (111)

≤ 3L2E
[∥∥∥x(k) − x̄(k)

∥∥∥2]+ 3nb̂2 + 3nE

∥∥∥∥∥ 1n
n∑

i=1

∇fi(x(k)
i ) +

1

n

n∑
i=1

(
∇fi(x̄(k))−∇fi(x(k)

i )
)∥∥∥∥∥

2


≤ 9L2E
[∥∥∥x(k) − x̄(k)

∥∥∥2]+ 3nb̂2 + 6nE

∥∥∥∥∥ 1n
n∑

i=1

∇fi(x(k)
i )

∥∥∥∥∥
2




When γ ≤ 1−λ2

6L , i.e., (1−λ2)
2

γ2 − 18L2 ≥ (1−λ2)
2

2γ2 , we combine (110) and (111) to achieve

E∥x(k) − x̄(k)∥2 ≤ 24nγ2

(1− λ2)2
E∥ 1

n

n∑
i=1

∇fi(x(k)
i )∥2 + 4γ2

(1− λ2)2
E∥g(k)

s ∥2 +
12nγ2b̂2

(1− λ2)2
. (112)

Recalling (107), we have

E

∥∥∥∥∥ 1n
n∑

i=1

∇fi(x(k)
i )

∥∥∥∥∥
2
 = E

[∥∥∥∥ 1n1Tg(k)
s

∥∥∥∥2
]
≤ 1

n
E
[∥∥∥g(k)

s

∥∥∥2] (113)

Substituting (113) into (112), we achieve

E
[∥∥∥x(k) − x̄(k)

∥∥∥2] ≤ 28γ2

(1− λ2)2
E
[∥∥∥g(k)

s

∥∥∥2]+ 12nγ2b̂2

(1− λ2)2
. (114)

Therefore, when γ ≤ min

{
(1−β)2

2
√
2L′
√

β+β2
, (1−β)2

(2+(1−β)(3−β+2β2))L′ ,
1−λ2

6L

}
= O

(
min

{
(1−β)2

L′ , 1−λ2

L

})
, combining (114)

with (113) and (105), we have

1

T

T−1∑
k=0

(
E

∥∥∥∥∥ 1n
n∑

i=1

∇fi(x(k)
i )

∥∥∥∥∥
2
+

1

n

n∑
i=1

E
[∥∥∥x(k)

i −x̄
(k)
∥∥∥2])

≤ 1

T

T−1∑
k=0

(
1

n
E
[∥∥∥g(k)

s

∥∥∥2]+ 1

n

(
28γ2

(1− λ2)2
E
[∥∥∥g(k)

s

∥∥∥2]+ 12nγ2b̂2

(1− λ2)2

))

=O
(
1

n
E
[∥∥∥g(k)

s

∥∥∥2]+ γ2b̂2
)

=O
(
1− β

γT
+

γσ2

1− β
+ γ2b̂2

)
.

(115)

F.2. Proof of Corollary 2

Proof of Corollary 2. If we let γ = O( 1−β√
T
), it then holds that

1

T

T−1∑
k=0

(
E

∥∥∥∥∥ 1n
n∑

i=1

∇fi(x(k)
i )

∥∥∥∥∥
2
+

1

n

n∑
i=1

E
[∥∥∥x(k)

i − x̄(k)
∥∥∥2])

=O
(
1− β

γT
+

γσ2

1− β
+ γ2b̂2

)
=O

(
1√
T

+
σ2

√
T

+
(1− β)2b̂2

T

)

=O
(

1√
T

)
.

(116)

G. More Experimental Details
G.1. Experimental setting for Table 1

Cifar-10 dataset contains 50,000 training samples and 10,000 validating samples. We follow the SOTA training scheme
and train totally 200 epochs. The learning rate is linearly scaled and gradually warmed up form a relatively small value (e.g.
0.1) in the first 5 epochs. We decay the learning rate by a factor of 10 at 100, 150 epochs. To eliminate the effect of topology
with different size in decentralized algorithms, we used 8 workers (i.e. 8 GPUs) in all decentralized training and changed the
batch size of every single GPU respectively. For ImageNet experiments, the training setting is introduced in Sec. 7 in details.
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Figure 6. Different topologies with 8 nodes.

G.2. Experimental setting for linear regression (i.e., Figs. 2 and 3)

In this experiment, we consider a linear regression problem:

min
x∈Rd

1

n

n∑
i=1

fi(x) where fi(x) =
1

2
∥Aix− bi∥2. (117)

In the above problem, we set n = 8 and all computing nodes are organized into the mesh topolology, see Fig. 6. The
weight matrix is generated from the Metropolis-Hastings rule [42, Table 14.1] so that it satisfies Assumption A.3. Quantities
Ai ∈ R50×30 and bi ∈ R50 are local data held in node i. Each Ai is generated from the standard Gaussian distribution
N (0, 1), and bi = Axx

o + s in which xo ∈ R30 is a predefined solution, and s is a white noise with magnitude 0.01. For
DSGD, DmSGD, and DecentLaM, we set learning rate γ = 0.001 and β = 0.8. To evaluate the inconsistency bias, we let
each node i access the accurate gradient ∇fi(x) = AT

i (Aix − bi) rather than the stochastic gradient descent. The y-axis
indicates the relative error 1

n

∑n
i=1 ∥x

(k)
i − x⋆∥2/∥x⋆∥2 in which x⋆ is the optimal solution to problem (117).

G.3. Network topologes used in Table 6

We empirically investigate a series of undirected deterministic and time-varying topologies. We generate the weight matrix
W according to the Metropolis-Hastings rule [42, Table 14.1] so that it is satisfies Assumption A.3. A positive-definite W is
not required in any of our experiments. We organize all computing nodes into the following topologies with BlueFog [1].

• Ring. All nodes forms a logical ring topology. Every node communicate with its direct neighbors (i.e. 2 peers).

• Mesh. All nodes forms a logical mesh topology. Every node communicate with its direct neighbors. It is a multi-peer
topology.

• Symmetric Exponential Graph [1, 4]. The node with odd rank i communicates with even ranks i + 20 − 1, i + 21 −
1, ..., i+ 2⌊log2(n−1)⌋ by sending a message and waiting for a response.

• Bipartite Random Match. All nodes are evenly divided into two non-overlapping groups randomly per iteration.
Communication is only allowed within each pair of the nodes. We keep the same random seed in all nodes to avoid
deadlocks.

We also visually illustrate the aforementioned topologies with 8 nodes in Fig. 6.

G.4. Training time comparison

The end-to-end training speed varies across different models and network bandwidth conditions. For the sake of brevity,
we compare the runtime of PmSGD, DmSGD and DecentLaM in training ResNet-50 (ImageNet) with different batch sizes
and network bandwidths. The speed-up of DmSGD/DecentLaM over PmSGD is consistent for other backbones and tasks.
In Fig. 7, DecentLaM and DmSGD have equivalent runtime because they are based on the same partial averaging operation.
However, they can achieve 1.2∼1.9×speed-up compared to PmSGD, which is consistent with [4].
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Figure 7. Runtime comparison on ResNet-50 with different batch sizes and network bandwidth (Left: 10Gbps; Right: 25Gbps). Each
column indicates the averaged iteration runtime of 500 iterations. The thick part highlights the communication overhead.

G.5. Performance with different topologies.

We now examine how DecentLaM is robust to different topologies. To this end, we first organize all computing nodes
into ring, mesh, symmetric exponential, or the bipartite random match topology, see Appendix G.3 for details of these
topologies. Next we test the performance of DecentLaM on ResNet-50 with these topologies and the results are in Table
6. It is observed that DecentLaM has a consistent performance with different topologies. The ring topology is sparser than
symmetric exponential topology. Interestly, it is observed to have a better accuracy in the 32K batch-size setting. It is
conjectured that the ring topology can help escape from shallow local minimums when batch-size is large. We leave the
justification as the future work.

TOPOLOGY
BATCH SIZE

16K 32K

RING 76.65 76.34
MESH 76.54 76.47

SYMMETRIC EXPONENTIAL 76.73 76.22
BIPARTITE RANDOM MATCH 76.53 76.11

Table 6. DecentLaM has consistent performance with different network topologies on ImageNet (ResNet-50).




