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0.1. Details of transfer from CNN structure to ViT

We attempt to transfer the dense connection as
DenseNets, wide or narrow channel dimensions as Wide-
ResNet, channel attention as SE module, more heads as
ResNeXt structure, and Ghost operation to ViT to validate
the effects of CNN-based structure on ViT. ON the other
hand, we also attempt to transfer these structure designs to
our T2T-ViT. To simplify the designs, we only take ViT-
S/16 and T2T-ViT-14 as examples and transfer the follow-
ing designs strategies:

From ResNet-Wide to VIiT&T2T-VIiT Wide-ResNets
are designed by decreasing layer depth and increasing width
of ResNets, and such a design can improve model perfor-
mance [|1]. We thus design a ViT with deep-narrow back-
bone (ViT-DN) and Shallow-Wide backbone (ViT-SW),
where ViT-DN has hidden dimensions 384 and 16 trans-
former layers and ViT-SW has hidden dimension 1024 and
4 layers.

From DenseNet to VIT&T2T-ViT Densely Connected
Convolution Networks (DenseNets) [4] connect each con-
volutional layer with every other layer rather than only cre-
ate short paths from early to later layer like ResNets, which
can improve the information flow between layers in the net-
work. As ViT adopts skip-connection as ResNets, a natu-
ral transfer is to apply the dense connection to ViT&T2T-
ViT as ViT-Dense&T2T-ViT-Dense. Similar to DenseNet,
if each block in ViT-Dense&T2T-ViT-Dense has L Trans-
former layers, there are L(L + 1)/2 connections in this
block and [-th layer has [ input from the early layers. Specif-
ically, we set the hidden dimension of the first layer in ViT-
Dense&T2T-ViT-Dense as 128 and it increases 64 channels
(“growth rate” as DenseNets) in each layer after concate-
nating with the early layers channels. The ViT-Dense&T2T-
ViT-Dense has 4 blocks as [4,6,6,4] and transition layers can
compress the channels after each block to improve model

compactness. Such a design can make the ViT-Dense&T2T-
ViT-Dense are deeper than ViT&T2T-ViT with a similar
number of parameters and MACs.

From SENet to ViT&T2T-ViT Squeeze-an-Excitation
(SE) Networks [3] apply the SE module in channel dimen-
sion, which can learn the inter-dependency between chan-
nels and bring improvement in performance on ResNets.
The SE module is extremely simple and useful in CNN, so
we transfer such modules to ViT&T2T-ViT. In ResNets, the
SE module is applied after each bottleneck structure, thus
we add the SE module in the channels after multi-head at-
tention computation, and create ViT-SE&T2T-ViT-SE. The
SE module in ViT&T2T-ViT can not only simply learn the
inter-dependency between channels but also learn the local
attention in the spatial dimension, as in the patch embed-
ding, the spatial information in each patch will be squeezed
to channel dimension.

From ResNeXt to VIiT&T2T-ViT ResNeXt is con-
structed by splitting the channels with multiple paths and
then concatenate a set of transformations on each split path,
which is similar to the split-transform-merge strategy in In-
ception models [8]. In each split path, only 4 channels are
transformed and then concatenated with other paths. Such
a strategy is the same as the multi-heads attention design by
splitting the channel dimensions into multiple heads. The
size of the set of transformations in ResNeXt is exactly
the number of heads, which is always 32 in ResNeXt. So
for VIT&T2T-ViT, we can simply add the number of heads
from 8 to 32 as ViT-ResNeXt&T2T-ViT-ResNeXt to vali-
date the effects of such aggregated transformations in ViT
and T2T-ViT.

From Ghost-CNN to VIT&T2T-ViT GhostNets [2] pro-
pose Ghost operation to generate more feature with cheap
operations, which is a simple but effective method as the



Table 1. The hyper-parameters for all T2T-ViT models on Ima-
geNet.

Models T2T-ViT-7/12  T2T-ViT-14  T2T-ViT-19/24
Epochs 310 310 310
Warmup Epochs 5 5 5
Batch size 1024 512 512
Learning rate le-3 Se-4 Se-4
Weight decay 3e-2 Se-2 6.5e-2
Label smoothing 0.1 0.1 0.1
Dropout 0 0 0
Stoch.Depth 0.1 0.1 0.1
Mixup prob. 0.8 0.8 0.8
Cutmix prob. 1.0 1.0 1.0
Erasing prob. 0.25 0.25 0.25

feature maps in ResNets always has redundant channels.
The ViT models have more redundant channels and invalid
channels than ResNets. So we can transfer the ghost op-
erations from CNN to ViT by applying such operations on
both attention blocks and feed-forward blocks. As shown
in Fig. 1, the ghost operation can be simply applied to ViT
structure. Different with T2T-ViT-Dense and T2T-ViT-SE
with comparable model size with T2T-ViT-14, the ghost op-
eration can reduce the number of parameters and MACs of
models, so the T2T-ViT-Ghost only has 80% parameters and
of T2T-ViT-14.

For fair comparisons, the above variants of T2T-ViT
are designed with comparable size with T2T-ViT-14 and
ResNet50 except for T2T-ViT-Ghost.

We give a simple reason why some CNN-based opera-
tion not work well in Transformer-based model. For Ghost,
it would not improve the feature richness when using linear
projected features in self-attention. For Dense, the gradi-
ent backpropagated through dense connections would per-
turb the self-attention dynamics per layer and thus hurt the
model performance. For SE, one of the reasons is that self-
attention is followed by MLP. Self-attention and MLP to-
gether dynamically reweigh and integrate multiple feature
channels, and thus override the benefits from channel atten-
tion of SE.

It is noted that our design of each transferring is not the
only choice, and we wish the transfers can motivate the
model designs of Transformers in vision tasks.

0.2. Details of experimental setting

Our models and experiments are built and conducted
upon PyTorch [5] and timm library [7], where we adopt
some regularization and data-augmentation methods to train
vision transformers to obtain reasonable results for ViT.
Thoughout the experiments, we adopt AdamW as optimizer
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(a) Ghost operation on attention block of ViT&T2T-ViT
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(b) Ghost operation on feed-forward block of ViT&T2T-ViT
Figure 1. Ghost operation to reduce the hidden dimensions: (a) on
the attention block (take the Query matrix W as example). (b) on
the feed-forward module. The dash line is the original operation
and the solid lines are our ghost operation.

Table 2. Ablation study on training methods. We take T2T-ViT-14
as baseline model on ImageNet.

Ablation on | | Apply? | T2T-ViT-14
All Applied (Baseline) | Yes |  81.5%
Mixup No 81.2%
Cutmix No 80.6%
Rand-augment No 80.9%
Random erasing No 81.0%
Label smoothing No 81.3%
Stoch.Depth No 81.2%
EMA No 81.4%

on ImageNet and SGD for CIFAR10 and CIFAR100 with
cosine learning rate decay. In most of experiments, we set
image size as 224 x224 except for some special cases with
384384 on ImageNet. In this section, we discuss the ex-
perimental setting adopted in this work.



Data augmentation and Regularization Without some
inductive bias inherent to CNN, vision transformers require
a large amount of data. In our experiments, we use rand-
augment [|] and random erasing [13] to enhance vision
transformers. We find that the data augmentation is cru-
cial to improve the transformers, as shown in Tab 2. The
regularization methods we used in this work including La-
bel Smoothing [6, 9], Mixup [12] and Cutmix [10]. We
conduct ablation study on the augmentation and regulariza-
tion methods, and the results are gieven in Tab. 2. We can
find that without one of the augmentation or regularization
methods, T2T-ViT-14 decrease around 0.1%-1.0% in accu-
racy for different methods.

Exponential Moving Average (EMA) EMA can im-
prove the stability of training and we empirically find that it
can improve the T2T-ViT model with 0-0.3% improvements
(Tab. 2). In practical training, EMA test results are smaller
than the normal testing at the beginning of training but can
increase very fast after 10-20 epochs.

Hyper-parameters The hyper-parameters used in our ex-
periments such as learning rate (Ir), weight decay, batch
size, Mixup and Cutmix are summarized in Tab. 1.

Transfer learning When fine-tuning our pretrained T2T-
ViT from ImageNet to downstream datasets like CIFAR10
and CIFAR100, we adopt learning rate 5e-2 and weight de-
cay Se-4 by using SGD optimizer. We train T2T-ViT with
60 epochs with cosine learning rate decay, and the images
of CIFAR10 and CIFARI100 are resized as 224 x 224 for
finetuning.

Ablation study on the effects of patch size or overlapping
size. In our work, we use patch size (7,3,3) and overlap-
ping size (4,2,2) in the three T2T layers. We also evalu-
ated the models with different patch sizes like (10,6,6) and
(7,5,5), and different overlapping sizes (4,4,1) or (4,1,4).
We found performance difference is quite small (around
0.2%), demonstrating our T2T module is robust to patch
size and overlapping size choice. Our experiments pro-
vide two principles to design patch size and overlapping
size in T2T: 1) it is better to use a smaller patch size than
a larger one to save GPU memory, considering the perfor-
mance gain is similar; 2). Progressive downsampling is bet-
ter than aggressive downsampling as (4,2,2) is slightly bet-
ter than (4,4,1) (0.2% in accuracy). So we adopt the current
middle-size patch size and overlapping configurations.
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