
Appendix
This appendix is organized as follows:

• For preliminaries on structural causal model and do-
calculus, we refer readers to Section 2 of [10].

• Section A.1 gives the proofs and derivations for Sec-
tion 3, where we first prove the Counterfactual Faith-
fulness theorem in Section A.1.1, and then prove the
sufficient condition used to establish the correspon-
dence between DCMs and disentangled generative
causal factors in Section A.1.2.

• Section A.2 the proofs and derivations for Section 4,
where we prove the Proxy Function theorem and its
corollary in Section A.2.1, and then derive Eq. (7) in
Section A.2.2.

• Section A.3 provides implementation details. Specifi-
cally, in Section A.3.1, we provide the network archi-
tecture of DCMs, the implementation of CycleGAN
loss LiCycleGAN and DCM training details. In Sec-
tion A.3.2, we show the network architectures of our
backbone, the VAE and discriminators, together with
their training details. In Section A.3.3, we attend to
some details in the experiment.

• Section A.4 shows additional generated images from
our DCMs and additional CAM results.

A.1. Proof and Derivation for Section 3
In this section, we will first derive the Counterfactual

Faithfulness theorem. Then we will prove the sufficient con-
dition in Section 3.1.

A.1.1. Counterfactual Faithfulness Theorem

We will first provide a brief introduction to the concept
of counterfactual and disentanglement. Causality allows to
compute how an outcome would have changed, had some
variables taken different values, referred to as a counterfac-
tual. In Section 3.1, we refer to each DCM (Mi,M

−1
i) in

{(Mi,M
−1
i)}ki=1 as a counterfactual mapping, where each

Mi (or M−1i) essentially follows the three steps of com-
puting counterfactuals [12] (conceptually): given a sample
X = x, 1) In abduction, (U1 = u1, . . . , Ui = ui, . . . , Uk =
uk) is inferred from x through P (U |X); 2) In action, the
attribute Ui is intervened by setting it to u′i drawn from
P (Ui|S = t) (or P (Ui|S = s)), while the values of
other attributes are fixed; 3) In prediction, the modified
(U1 = u1, . . . , Ui = u′i, . . . , Uk = uk) is fed to the gen-
erative process P (X|U) to obtain the output of the DCM
Mi(x) (or M−1i (x)). More details regarding counterfactual
can be found in [11].

Our definition of disentanglement is based on [5] of
group theory. Let U be a set of (unknown) generative fac-
tors, e.g., such as shape and background. There is a set of
independent causal mechanisms ϕ : U → X , generating
images from U . Let G be the group acting on U , i.e., g ◦ u
transforms u ∈ U using g ∈ G (e.g., changing background
“cluttered” to “pure”). When there exists a direct product
decomposition G =

∏k
i=1 Gi and U =

∏k
i=1 Ui such that

Gi acts on Ui, we say that each Ui is the space of a disentan-
gled factor. The causal mechanism (Mi,M

−1
i) is disentan-

gled when its transformation in X corresponds to the action
of Gi on Ui.

We use U and X to denote the vector space of U and
X respectively. We denote the generative process P (X|U)
(U → X) as a function g : U → X . Note that we con-
sider the function g as an embedded function [2], i.e., a con-
tinuous injective function with continuous inversion, which
generally holds for convolution-based networks as shown
in [14]. Without loss of generality, we will consider the
S = s→ S = t mapping Mi for the analysis below, which
can be easily extended to M−1i . Our definition of disen-
tangled intervention follows the intrinsic disentanglement
definition in [2], given by:
Definition (Disentangled Intervention). A counterfactual
mapping M : X → X is a disentangled intervention with
respect to Ui, if there exists a transformation M ′ : U → U
affecting only Ui, such that for any u ∈ U ,

M(g(u)) = g(M ′(u)). (1)

Then we have the following theorem:
Theorem (Counterfactual Faithfulness Theorem). The
counterfactual mapping Mi(X) is faithful if and only if Mi

is a disentangled intervention with respect to Ui.
Note that by definition, if Mi(X) is faithful, Mi(X) ∈

X . To prove the above theorem, one conditional is trivial:
if Mi is a disentangled intervention, it is by definition an
endomorphism of X so the counterfactual mapping must be
faithful. For the second conditional, let us assume a faithful
counterfactual mapping Mi(X). Given g is embedded, the
counterfactual mapping can be decomposed as:

Mi(X) = g ◦M ′i ◦ g−1(X), (2)

where ◦ denotes function composition and M ′i : U → U af-
fecting only Ui. Now for any u ∈ U , the quantity Mi(g(u))
can be similarly decomposed as:

Mi(g(u)) = g ◦M ′i ◦ g−1 ◦ g(u) = g ◦M ′i(u). (3)

Since M ′i is a transformation in U that only affects Ui, we
show that faithful counterfactual transformation Mi(X) is
a disentangled intervention with respect to Ui, hence com-
pleting the proof.

With this theory, faithfulness=disentangled intervention.
In Section 3.1, we train Mi to ensure Mi(xs) ∼ P (Xt)
(faithfulness) for every sample xs in S = s, hence encour-
aging Mi to be a disentangled intervention. Note that the
above analysis can easily generalize to M−1i .

A.1.2. Sufficient Condition

We will prove the following sufficient condition: if
(Mi,M

−1
i) intervenes Ui, the i-th mapping function out-

puts the counterfactual faithful generation, i.e., the smallest
LiCycleGAN .

Without loss of generality, we will prove for the S =
s → S = t mapping Mi, which can be extended to
M−1i . For a sample xs in S = s, let g−1(xs) = u =
(u1, . . . , ui, . . . , uk). We modify Ui by changing ui to
a value ûi drawn from P (Ui|S = t). Denote the mod-
ified attribute as û = (u1, . . . , ûi, . . . , uk). Denote the
sample with attribute û as x̂. Given Mi intervenes Ui,
Mi(xs) corresponds to a counterfactual outcome when Ui
is set to ûi through intervention (or U set as û). Now as
g−1(x̂) = û, using the counterfactual consistency rule [9],
we have Mi(xs) = x̂. As x̂ is faithful with the Counterfac-
tual Faithfulness theorem, we prove that Mi(xs), i.e., the
output of the i-th mapping function, is also faithful,i.e., the
smallest LiCycleGAN .

A.2. Proof and Derivation for Section 4

In this section, we will first derive the Proxy Function
theorem and the domain-agnostic nature of the proxy func-
tion, and then derive Eq. (7) under our chosen function
forms in Section 4.

A.2.1. Proxy Function Theorem

We will derive for the general case where X̃ is any con-
tinuous proxy. We will assume that the confounder U fol-
lows the completeness condition in [8], which accommo-
dates most commonly-used parametric and semi-parametric
models such as exponential families.

Given hy(X, X̂) solves Eq. (3), we have:

P (Y |Z,X, S) =
∫ +∞

−∞
hy(X, X̂)P (X̂|Z,X, S)dX̂

=

∫ +∞

−∞
hy(X, X̂)

{∫ +∞

−∞
P (X̂|U)P (U |Z,X, S)dU

}
dX̂.

(4)

From the law of total probability, we have:

P (Y |Z,X, S) =
∫ +∞

−∞
P (Y |U,X)P (U |Z,X, S)dU.

(5)

With Eq. (4) and Eq. (5) and the completeness condition,
we have:

P (Y |U,X) =

∫ +∞

−∞
hy(X, X̂)P (X̂|U)dX̂, (6)

which proves the Proxy Function theorem.
From Eq. (6), we have:∫ +∞

−∞
hy(X, X̂, S = s)P (X̂|U)dX̂

=

∫ +∞

−∞
hy(X, X̂, S = t)P (X̂|U)dX̂.

(7)

Hence from the completeness condition, we have
hy(X, X̂, S = s) = hy(X, X̂, S = t) [8]. Hence we prove
that hy(X, X̂) is domain-agnostic.

Note that in Section 4, our proxy X̂ is a continuous ran-
dom variable takes values from {Mi(xs)}ki=1 for sample xs
in S = s or {M−1i (xt)}ki=1 for sample xt in S = t. This
is a special case of the analysis above with the probability
mass of X̂ centers around the set of its possible values.

A.2.2. Derivation of Eq. (7)

We derive Eq. (7) as a corollary to [8]. The goal is to
solve for hy(X, X̂) under the function form in Eq. (6) from
the formula below:

P (Y |Z,X, S = s) =

∫ ∞
−∞

P (X̂|Z,X)hy(X, X̂)dX̂.

(8)
For simplicity, we define a standard multivariate Gaus-

sian function φ(·). If A ∼ N (0, I) and A ∈ Rn, we have:

P (A) = φ(A) =
1

(2π)n/2
exp(−1

2
ATA). (9)

Our function form for P (Y |Z,X, S = s) is given by
N (b1 +W1Z +W2X,Σ1) and for P (X̂|Z,X, S = s) is
given by N (b2 + W3Z + W4X,Σ2), where the variance
terms are omitted in the main text for brevity, as the final re-
sults only depend on the means. Specifically, Σ2 ∈ Rn×n
is a symmetrical matrix with Eigen-decomposition given by
Σ2 = UΛUT , where U ∈ Rn×n is a full-rank matrix con-
taining the eigen-vectors and Λ ∈ Rn×n is a diagonal ma-
trix with eigen-values. We define B = UΛ

1
2 , and hence

Σ2 = BBT . We can rewrite P (X̂|Z,X, S = s) as:

P (X̂|Z,X, S = s) = |BBT |− 1
2φ(B−1(X̂ − µ̂)), (10)

where µ̂ = b2 + W3Z + W4X . Define Z ′ = B−1µ̂ and
X̂ ′ = B−1X̂ . We define

ty(Z
′, X) = P (Y |Z = W+

3 (BZ
′−W4X−b1), X, S = s).

(11)

Now we can solve hy from

ty(Z
′, X) =

∫ ∞
−∞

φ(X̂ ′ − Z ′)hy(X,BX̂ ′)dX̂ ′. (12)

Specifically, let h1 and h2 represent the Fourier transform
of φ and ty , respectively:

h1(ν) =

∫ ∞
−∞

exp(−iνZ ′)φ(Z ′)dZ ′

=

∫ ∞
−∞

exp(−iνZ)φ(Z)dZ
(13)

h2(ν, X, Y) =

∫ ∞
−∞

exp(−iνZ ′)ty(Z ′, X)dZ ′, (14)

where i = (−1) 1
2 is the imaginary unity. Substituting

Eq. (12) (13) into Eq. (14), we have:

h2(ν, X, Y) = h1(ν)

∫ ∞
−∞

exp(−iνX̂ ′)hy(X,BX̂ ′)dX̂ ′.

(15)
Hence∫ ∞

−∞
exp(−iνX̂ ′)hy(X,BX̂ ′)dX̂ ′ =

h2(ν, X, Y)

h1(ν)
.

(16)
By Fourier inversion, we have:

hy(X,BX̂
′) =

1

2π

∫ ∞
−∞

exp(−iνX̂ ′)h2(ν, X, Y)

h1(ν)
dν

(17)
By substituting X̂ = BX̂ ′, we have

hy(X, X̂) =
1

2π

∫ ∞
−∞

exp(−iνB−1X̂)
h2(ν, X, Y)

h1(ν)
dν

(18)
Solving for Eq. (18) yields:

hy(X, X̂) = b1 −W1W
+
3 b2 + W1W

+
3 X̂

+ (W2 −W1W
+
3 W4)X,

(19)

where scaling terms not related with X, X̂ are dropped as
they do not impact inference. This completes the derivation.

A.3. Implementation Details

In this section, we will first provide a system overview,
followed by the implementation details for DCMs in Sec-
tion 3 and implementation details for backbone, VAE and
discriminators in Section 4. Then we will give a more de-
tailed discussion on the experiment design.

Sample 𝒙𝒙 from
𝑆𝑆 = 𝑠𝑠 or 𝑆𝑆 = 𝑡𝑡

Calculate
ℒ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 for
𝑖𝑖 ∈ {1, … , 𝑘𝑘}

Update 𝑀𝑀𝑖𝑖 ,𝑀𝑀𝑖𝑖
−1

with minimum
ℒ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖

Sample 𝒙𝒙𝒔𝒔,𝑦𝑦𝑠𝑠, 𝒙𝒙𝒕𝒕
Obtain �𝒳𝒳 =
𝑀𝑀𝑖𝑖 𝒙𝒙𝒔𝒔 𝑖𝑖=1

𝑘𝑘

Calculate
ℎ𝐶𝐶 𝒙𝒙𝑠𝑠, �𝒙𝒙 ∀�𝒙𝒙 ∈
�𝒳𝒳

Calculate
𝑃𝑃(𝑌𝑌|𝑑𝑑𝑑𝑑(

)
𝑋𝑋 =

𝒙𝒙𝑠𝑠 , 𝑆𝑆 = 𝑠𝑠)

Calculate
losses and
update

Stage 1

Stage 2

𝑀𝑀𝑖𝑖 ,𝑀𝑀𝑖𝑖
−1

𝑖𝑖=1
𝑘𝑘

;
Trained parameters
of backbone and
ℎ𝐶𝐶(𝑋𝑋, �𝑋𝑋)

Figure A1: Overview of the two-stage training procedure.

A.3.1. Implementation Details for DCMs

System Overview. The two-stage training procedure is de-
picted in Figure A1. For inference, please refer to Algo-
rithm ??.
Network Architecture for DCMs. Let Conv2D(n,
c) represent 2-d convolutional layer with n × n
as kernel size and c output channels. For Each
Mi,M

−1
i , the network architecture is given

by ReflectionPad(3) Conv2D(7,64)
InstanceNorm ReLU Conv2D(3,128)
InstanceNorm ReLU Conv2D(3,256)
InstanceNorm ReLU ResNetBlock×2
ConvTranspose2D(3,128) InstanceNorm
ReLU ConvTranspose2D(3,64) InstanceNorm
ReLU ReflectionPad(3) Conv2D(7,3)
Tanh, where each ResNetBlock is implemented
by Conv2D(3,256) ReflectionPad(1)
Conv2D(3,256) with skip connection.
Network Architecture for CycleGAN Discriminators. To
calculate eachLiCycleGAN , two discriminators taking image
as input is required for S = s and S = t, respectively. We
implement each discriminator with Conv2D(4,64)
LeakyReLU(0.2) Conv2D(4,128)
InstanceNorm LeakyReLU(0.2)
Conv2D(4,256) InstanceNorm
LeakyReLU(0.2) Conv2D(4,512)
InstanceNorm LeakyReLU(0.2) Conv2D(4,1).
CycleGAN Loss. Next, we will detail the implementation
of LiCycleGAN , which is given by:

LiCycleGAN = Liadv + α1Licyc + α2Liidt (20)

where α1, α2 are trade-off parameters. The adversarial loss
Liadv requires the transformed images to look like real im-
ages in the opposing domain. For a sample x, Lireal is given

by:

Liadv =

{
log(1−D′t(Mi(x))), if x from S = s,

log(1−D′s(M−1i (x))), otherwise,
(21)

where D′s, D
′
t are discriminators that return a large value

when its input looks like images in S = s, S = t, respec-
tively. Licyc is the cycle consistency loss [22] given by

Licyc =

{∥∥M−1i (Mi(x))− x
∥∥ , if x from S = s,∥∥Mi(M

−1
i (x))− x

∥∥ , otherwise,
(22)

where ‖·‖ is implemented using L1 norm. We follow Cycle-
GAN [22] to use an identity loss Liidt to improve generation
quality:

Liidt =

{∥∥M−1i (x)− x
∥∥ , if x from S = s,

‖Mi(x)− x‖ , otherwise.
(23)

Discriminator Training. D′s, D
′
t are trained to maximize

the following loss:

Ld =

{
logD′s(x) +

1
k

∑k
i=1 Liadv, if x from S = s,

logD′t(x) +
1
k

∑k
i=1 Liadv, otherwise,

(24)
which requires D′s, D

′
t to recognize real samples and reject

fake samples generated by all DCMs.
Training Details. The networks are randomly initialized by
sampling from normal distribution with standard deviation
of 0.02. We use Adam optimizer [6] with initial learning
rate 0.0002, beta1 as 0.5 and beta2 as 0.999. We train the
network with the initial learning rate for 100 epochs and
decay the learning rate linearly for another 100 epochs on
ImageCLEF-DA [1] and OfficeHome [18]. We train the
network with the initial learning rate for 20 epochs and
decay the learning rate linearly for another 20 epochs on
VisDA-2017 [13]. The CycleGAN loss and discriminator
loss are updated iteratively. The adopted competitive train-
ing scheme to train DCMs can sometimes be sensitive to
network initialization. Hence all DCMs are first trained
for 8000 iterations, before using the competitive training
scheme.

A.3.2. Implementation Details for Section 4

Backbone. We adopt ResNet-50 [4] as our backbone,
where the architecture is shown in Figure A2. Specifically,
each convolutional layer is described as (n × n conv, p),
where n is the kernel size and p is the number of output
channels. Convolutional layers with /2 have a stride of 2
and are used to perform down-sampling. The solid curved
lines represent skip connection. The batch normalization
and ReLU layers are omitted in Figure A2 to highlight the

key structure of the backbone. We fine-tuned the pre-trained
backbone on ImageNet [16] for our experiments.
VAE. Denote Linear(n,m) as a linear layer with n
input channels and m output channels. The encoder Qθ
is implemented with Linear(2048,1200) ReLU
Linear(1200,600) ReLU Linear(600,200),
where the dimension of Z is 100, the first 100 dimensions
of the output are the mean and the last 100 dimensions
are the variance. The decoder Pθ is implemented with
Linear(100,600) ReLU Linear(600,2048)
ReLU.

3 × 3 conv, 64

3 × 3 conv, 64

3 × 3 conv, 64

3 × 3 conv, 128, /2

3 × 3 conv, 128

3 × 3 conv, 256, /2

3 × 3 conv, 256

3 × 3 conv, 512, /2

3 × 3 conv, 512

image

Avg Pool

fc

logits

3 × 3 conv, 16

image

× 3

Avg Pool

fc

logits

3 × 3 conv, 160

3 × 3 conv, 160

3 × 3 conv, 160

3 × 3 conv, 160

× 3

3 × 3 conv, 320, /2

3 × 3 conv, 320

3 × 3 conv, 320

3 × 3 conv, 320

× 3

3 × 3 conv, 640, /2

3 × 3 conv, 640

3 × 3 conv, 640

3 × 3 conv, 640

7 × 7 conv, 64,/2

𝑋

× 2

Avg Pool

fc

Φ𝐸(𝑋)

3 × 3 conv, 64

3 × 3 conv, 64

3 × 3 conv, 128,/2

3 × 3 conv, 128

3 × 3 conv, 128

3 × 3 conv, 128

3 × 3 conv, 256, /2

3 × 3 conv, 256

3 × 3 conv, 256

3 × 3 conv, 256

3 × 3 max pool, /2

3 × 3 conv, 512, /2

3 × 3 conv, 512

3 × 3 conv, 512

3 × 3 conv, 512

7 × 7 conv, 64,/2

Image

× 3

Avg Pool

fc

1 × 1 conv, 64

3 × 3 conv, 64

1 × 1 conv, 128,/2

3 × 3 conv, 128

1 × 1 conv, 512

1 × 1 conv, 256, /2

3 × 3 conv, 256

1 × 1 conv, 1024

3 × 3 max pool, /2

1 × 1 conv, 512, /2

3 × 3 conv, 512

1 × 1 conv, 2048

1 × 1 conv, 256

× 4

× 6

× 3

Feature

Figure A2: ResNet-50
architecture.

Discriminators. The
discriminator Ds and
Dt are implemented
with Linear(2048,
1024) ReLU
Linear(1024,1024)
ReLU
Linear(1024,1).
Training Details. The net-
works are randomly initial-
ized with kaiming initial-
ization with gain as 0.02. We
employ mini-batch stochas-
tic gradient descent (SGD)
with momentum of 0.9 and
nesterov enabled to train our
model. We trained the net-
works for 10000 iterations
on VisDA-2017 [13] and Of-
ficeHome [18], and 3000
iterations on ImageCLEF-
DA [1]. The linear func-
tions fy, fx̂, VAE, backbone
and discriminators Ds, Dt

are updated iteratively.

A.3.3. Discussion on Ex-
periment

Choice of Dataset. While Office-31 [17] is also a pop-
ular dataset in UDA, some tasks in the dataset become
too trivial, where many UDA algorithms achieve 100%
(or almost) accuracy. Moreover, a recent study [15] re-
veals that the dataset is plagued with wrong labels, am-
biguous ground-truth and data leakage, especially in the
Amazon domain, which explains the low performance
in task DSLR→Amazon and Webcam→Amazon. Hence
we followed [20, 7, 19] and performed experiments on
ImageCLEF-DA instead, which substitute Office-31 as a
small-scale dataset with relatively small domain gap.
Detailed Discussion on t-SNE Plot. Note that the proxy
loss in Section 4 aligns the proxy features with the sample
features in the counterpart domain, which is different from

existing methods that try to align Xs and Xt directly. Our
inference uses the proxy function implemented with Eq.
(7), where in training, X takes values of Xs and X̂ takes
values of Mi(Xs), in testing, X takes values of Xt and X̂
takes values of M−1i (Xt). While Xs and Xt (or Mi(Xs)
andM−1i (Xt)) are not aligned in TCM, we can still achieve
competitive performance by finding how to transport with a
causality theoretic viewpoint of the domain shift.

A.4. Additional Results

𝑀1(𝒙𝑠) 𝑀2(𝒙𝑠) 𝑀3(𝒙𝑠) 𝑀4(𝒙𝑠)

𝑀1
−1(𝒙𝑡) 𝑀2

−1(𝒙𝑡) 𝑀3
−1(𝒙𝑡) 𝑀4

−1(𝒙𝑡)

𝒙𝒔

𝒙𝒕

R (𝑺 = 𝒔) C (𝑺 = 𝒕)

Figure A3: Supplementary to Figure 4.Transformation be-
tween “Real World” (R) and “Clipart” (C) domain with 4
trained DCMs {(Mi,M

−1
i)}4i=1. The winning DCM is out-

lined in red.

Additional Visualizations of DCMs Outputs. In Fig-
ure A3, we show additional generated images from
DCMs in the “Real World” (R)→“Clipart” (C) task of
OfficeHome [18], which also has a large domain gap.
{M1, . . . ,M4} (or {M−11 , . . . ,M−14 }) roughly correspond
to reducing (increasing) brightness, changing color, increas-
ing (decreasing) saturation and removing (adding) color.
Additional CAM Responses. In Figure A4, we show the
CAM responses in the “Real World”→“Clipart” task, where
GVB-GD and baseline focuses on the background to dis-
tinguish “bed” and “bike” and the shape semantic is lost,
leading to poor generalization in S = t. While TCM pre-
serves the foreground object shape semantic. In Figure A5,
all three methods fail on the two samples from S = t. On
the “bed” sample, all methods indeed focus on the object.

Method Backbone GFLOPS Additional GFLOPS #Parameters (M)

DANN 133 0.084 1.3
CDAN 133 1.158 18.1

GVB-GD 133 0.092 1.4
Baseline 133 0.072 1.1

TCM 133 0.364 10.1

Table A1: GFLOPS of feature extractor backbone and ad-
ditional modules (e.g., discriminator networks) as well as
#parameters of those additional modules on Office-Home.

However, the object itself is not very discriminative, which
may explain the failure. On the “bike” sample, the object is
small and all methods fail to distinguish it from the context.
Convergence Speed, GFLOPS, #Parameters. The con-
vergence speeds of TCM and related methods are shown
in Figure A6. Our TCM (red) converges slightly slower in
early iterations (e.g., before 20 on ImageCLEF-DA and 250
on Office-Home) due to the training of VAE in Eq. 9 and the
linear layers in Eq. 6. After that, TCM converges to the best
performance. The GFLOPS and #Parameters are shown in
Table A1. All methods use the same backbone and the back-
bone fine-tuning takes the major time cost (133), compared
with the GFLOPS from additional modules. Regarding the
parameters, our TCM has more (but not the most) because
of the additional VAE and linear layers.

References
[1] Imageclef-da. http://imageclef.org/2014/

adaptation, 2014. 4
[2] M. Besserve, A. Mehrjou, R. Sun, and B. Schölkopf. Coun-

terfactuals uncover the modular structure of deep generative
models. In ICLR, 2020. 1

[3] Shuhao Cui, Shuhui Wang, Junbao Zhuo, Chi Su, Qingming
Huang, and Qi Tian. Gradually vanishing bridge for adver-
sarial domain adaptation. In CVPR, 2020. 6

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016. 4

[5] Irina Higgins, David Amos, David Pfau, Sebastien
Racaniere, Loic Matthey, Danilo Rezende, and Alexander
Lerchner. Towards a definition of disentangled representa-
tions. arXiv preprint arXiv:1812.02230, 2018. 1

[6] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 4

[7] Mingsheng Long, ZHANGJIE CAO, Jianmin Wang, and
Michael I Jordan. Conditional adversarial domain adapta-
tion. In NeurIPS, 2018. 4

[8] Wang Miao, Zhi Geng, and Eric J Tchetgen Tchetgen. Iden-
tifying causal effects with proxy variables of an unmeasured
confounder. Biometrika, 2018. 2

[9] Judea Pearl. Causality: Models, Reasoning and Inference.
Cambridge University Press, 2nd edition, 2009. 2

Real World(𝑺𝑺 = 𝒔𝒔)
TCM

Clipart (𝑺𝑺 = 𝒕𝒕)

“b
ed

”
“b

ik
e”

GVB-GD Baseline

“b
ed

”
“b

ik
e”

GVB-GD Baseline TCM✘✘ 𝑿𝑿𝒔𝒔 𝑿𝑿𝒕𝒕

Figure A4: Class Activation Maps (CAMs) [21] of GVB-GD [3], Baseline and TCM on the Real World(S=s)→Clipart(S = t)
task in Office-Home dataset [18]. The left column shows two samples in each domain, whose class name is indicated on the
top. In S = t, we show two samples predicted wrongly by GVB-GD and Baseline, but correctly with TCM. Supplementary
to Figure 8

Clipart (𝑺𝑺 = 𝒕𝒕)

“b
ed

”
“b

ik
e”

GVB-GD Baseline TCM✘✘𝑿𝑿𝒕𝒕 ✘

Figure A5: Class Activation Maps (CAMs) [21]
of GVB-GD [3], Baseline and TCM on the Real
World(S=s)→Clipart(S = t) task in Office-Home
dataset [18]. The left column shows two samples in each
domain, whose class name is indicated on the left. All meth-
ods fail on the two samples. Supplementary to Figure 8.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

85

90

95

80

𝐴𝐴𝐴𝐴
𝐴𝐴.

(%
)

1 2 3 5 7 10
𝒌𝒌

𝑰𝑰 → 𝑷𝑷
𝑰𝑰 → 𝑪𝑪
𝑪𝑪 → 𝑷𝑷

𝑷𝑷 → 𝑰𝑰
𝑪𝑪 → 𝑰𝑰
𝑷𝑷 → 𝑪𝑪

SymNets
CDAN

TCM

DANN

SymNets
CDAN

TCM

DANN

ImageCLEF-DA I → P Office-Home A→ C

20012080 160Iteration

40%

60%

80%

Ac
cu

ra
cy

40%

60%

Ac
cu

ra
cy

2K 3K 4K 5KIteration

SymNets
CDAN

TCM

DANN

Figure A6: UDA accuracy (%) using DANN, CDAN, Sym-
Nets and our TCM, on different training iterations. Batch
size is 32.

[10] Judea Pearl and Elias Bareinboim. External validity: From
do-calculus to transportability across populations. Statistical
Science, 2014. 1

[11] J. Pearl, M. Glymour, and N.P. Jewell. Causal Inference in
Statistics: A Primer. Wiley, 2016. 1

[12] Judea Pearl and Dana Mackenzie. The Book of Why: The

New Science of Cause and Effect. 2018. 1
[13] Xingchao Peng, Ben Usman, Neela Kaushik, Judy Hoffman,

Dequan Wang, and Kate Saenko. Visda: The visual domain
adaptation challenge. arXiv preprint arXiv:1710.06924,
2017. 4

[14] Michael Puthawala, Konik Kothari, Matti Lassas, Ivan Dok-
manić, and Maarten de Hoop. Globally injective relu net-
works. arXiv preprint arXiv:2006.08464, 2020. 1

[15] Tobias Ringwald and Rainer Stiefelhagen. Adaptiope: A
modern benchmark for unsupervised domain adaptation. In
Proceedings of the IEEE/CVF Winter Conference on Appli-
cations of Computer Vision, 2021. 4

[16] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, et al. Imagenet large
scale visual recognition challenge. International Journal of
Computer Vision, 2015. 4

[17] Kate Saenko, Brian Kulis, Mario Fritz, and Trevor Darrell.
Adapting visual category models to new domains. In ECCV,
pages 213–226, 2010. 4

[18] Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty,
and Sethuraman Panchanathan. Deep hashing network for
unsupervised domain adaptation. In CVPR, 2017. 4, 5, 6

[19] Yabin Zhang, Bin Deng, Kui Jia, and Lei Zhang. Label prop-
agation with augmented anchors: A simple semi-supervised
learning baseline for unsupervised domain adaptation. In
ECCV, 2020. 4

[20] Yabin Zhang, Hui Tang, Kui Jia, and Mingkui Tan. Domain-
symmetric networks for adversarial domain adaptation. In
CVPR, 2019. 4

[21] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva,
and Antonio Torralba. Learning deep features for discrimi-
native localization. In CVPR, 2016. 6

[22] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A
Efros. Unpaired image-to-image translation using cycle-
consistent adversarial networks. In ICCV, 2017. 4

