
A. Details on the implementation
In this section, we list all the details of the implementation.

Source Code. Our source code is provided in this repository: https://github.com/okyksl/flow-lp.

A.1. Architectures
Generative model (NF) architecture. We use Glow [27] for the normalizing flow architecture. For the MNIST [34] and
FashionMNIST [63] experiments, we use a conditional, 12-step, Glow-coupling-based architecture similar to [2]. See Table 7
for the details. For the CIFAR-10/100 [30] and SVHN [42] experiments, we use the original Glow architecture described
in [27], i.e., 3 scales of 32 steps each containing activation normalization, affine coupling and invertible 1⇥1 convolution.
We adapt an existing PyTorch implementation in 1 to better match the original Tensorflow implementation in 2. For more
details on multi-scale architecture in normalizing flows, see [12].

Generative Model
Input: x 2 R784,y 2 R10

GLOWCouplingBlock
PermuteRandom

· · ·
⇥10
· · ·

GLOWCouplingBlock
PermuteRandom

GLOWCouplingBlock
Input: x 2 R784,y 2 R10

split x ! x1,x2 (784 ! 392, 392)
subnet x2 � y ! s1, t1 (402 ! 392, 392)

affine coupling x1, s1, t1 ! z1 (3⇥392 ! 392)
subnet z1 � y ! s2, t2 (402 ! 392, 392)

affine coupling x2, s2, t2 ! x
0

2 (3⇥392 ! 392)
concat. z1 � z2 (392, 392 ! 784)

Subnets
Input: x 2 R402

linear (402 ! 512)
ReLU

linear (512 ! 784)
split (784 ! 392, 392)

Table 7. Normalizing flow architectures used for our experiments on MNIST and FashionMNIST. With cin ! yout, we denote the
number of channels of the input and output of the layer. With �, we denote concatenation operation. We use the implementation provided
in https://github.com/VLL-HD/FrEIA. For more details on affine coupling layers, see §3.

Classifier architecture. For our experiments on MNIST, we use LeNet-5 [34] with replaced nonlinearity–instead of tanh
we use ReLU, and we initialize the network parameters with truncated normal distribution � = 0.1. For the FashionMNIST
experiments, we use the same classifier as used in [53]. See Table 8 for more details. For CIFAR-10/100 and SVHN,
we use the ResNet-18 [19] architecture as implemented in [9, 66]. This ResNet-18 includes slight modifications over the
standard ResNet-18 architecture in order to achieve better performance on CIFAR-10/100. See 3 and 4 for implementation.
In particular, the first layer is changed to a 3⇥ 3 convolution with stride 1 and padding 1, from the original 7⇥ 7 convolution
with stride 2 and padding 3. Additionally, the following max-pooling layer is removed. For CIFAR-10, we also use a similarly
modified ResNet-20 [18].

A.2. Hyperparameters
Generative Models. For MNIST and FashionMNIST, we use the Adam [26] optimizer with a batch size of 100 and learning
rate of 10�6 for 100 epochs to train normalizing flows. For CIFAR-10 and SVHN, we use the Adamax [26] optimizer with a
learning rate of 0.0005 and weight decay of 0.00005. We use a warmup learning rate schedule for the first 500.000 steps of
the training. That is, the learning rate is linearly increased from 0 to the base learning rate 0.0005 in 500.000 steps.

For VAE-GAN training, we run the implementation provided by authors5 with the default architectures and parameters.
That is, for FashionMNIST, we use � = 2.75, � = 1, ⌘ = 0 and latent space size of 10. We use the Adam optimizer with
a batch size of 100, learning rate of 0.005, weight decay of 0.0001 and train VAE-GANs for 60 epochs with an exponential
decay scheduling of 0.9 for the learning rate. For CIFAR-10, we use the CelebA [35] setup provided (the only 3-channel
color dataset provided) and thus use � = 3.0, latent space size of 25 and 30 epochs instead. Note that we report On-Learned-
Manifold Adversarial Training from [53] which uses class-specific VAE-GANs. That is, 10 VAE-GAN architectures are
trained for both FashionMNIST and CIFAR-10 datasets.

1
https://github.com/chrischute/glow

2
https://github.com/openai/glow

3
https://github.com/facebookresearch/mixup-cifar10

4
https://github.com/uoguelph-mlrg/Cutout

5
https://github.com/davidstutz/disentangling-robustness-generalization

https://github.com/okyksl/flow-lp
https://github.com/VLL-HD/FrEIA
https://github.com/chrischute/glow
https://github.com/openai/glow
https://github.com/facebookresearch/mixup-cifar10
https://github.com/uoguelph-mlrg/Cutout
https://github.com/davidstutz/disentangling-robustness-generalization


LeNet-5
Input: x ! R1⇥28⇥28

convolution (ker: 5⇥5, 1 ! 6; stride: 1; pad:2)
ReLU

AvgPool2d (ker: 2⇥2)
convolution (ker: 5⇥5, 6 ! 16; stride: 1; pad:0)

ReLU
AvgPool2d (ker: 2⇥2)

Flatten (16⇥5⇥5 ! 400)
linear (400 ! 120)

ReLU
linear (120 ! 84)

ReLU
linear (120 ! 10)

ReLU

CNN from [53]
Input: x 2 R1⇥28⇥28

convolution (ker: 4⇥4, 1 ! 16; stride: 2; pad:1)
Batch Normalization

ReLU
convolution (ker: 4⇥4, 16 ! 32; stride: 2; pad:1)

Batch Normalization
ReLU

convolution (ker: 4⇥4, 32 ! 64; stride: 2; pad:1)
Batch Normalization

ReLU
Flatten (64⇥3⇥3 ! 576)

linear (576 ! 100)
linear (100 ! 10)

Table 8. Convolutional Neural Network (CNN) architectures used for our experiments on MNIST and FashionMNIST. We use ker and
pad to denote kernel and padding for the convolution layers, respectively. With h⇥w, we denote the kernel size. With cin ! yout, we
denote the number of channels of the input and output of the layer.

Discussion on Hyperparameters of Generative Models. As normalizing flows directly optimize the log-likelihood of
the data, there are no hyperparameters in their loss function. Additionally, the normalizing flows that we use have a fixed
latent dimension equal to the input dimension due to their architectural design. As noted in §5.3, this is in contrast to VAE-
GAN used in [53] where the training involves optimizing separate losses for three networks (namely, encoder, decoder, and
discriminator) concurrently. Coefficients called �, �, and ⌘ are used to scale reconstruction, decoder, and discriminator loss,
respectively. Additionally, the latent size for VAE-GAN is hand-picked for each dataset.

Classifiers. For MNIST, we use the Adam optimizer with a learning rate of 0.001 and weight decay of 0.001. We train
LeNet-5 classifiers for 20 epochs with exponential learning decay of rate 0.1 for 10.000 steps. For FashionMNIST, we use
the training setup used in [53]. That is, we use the Adam optimizer with a learning rate of 0.01 and weight decay of 0.0001.
We train classifiers for 20 epochs with exponential learning decay of rate 0.9 for 500 steps. For CIFAR-10/100, we use
the training setup used in [9, 66]. More precisely, we use Stochastic Gradient Descent (SGD) [46] with a batch size of
128, learning rate of 0.1, weight decay of 0.0005, and Nesterov momentum [41] of 0.9. We train ResNet-18 and ResNet-
20 classifiers for 200 epochs and multiply the learning rate by 0.2 at epochs {60, 120, 160}. For SVHN, we use the same
optimizer with a weight decay of 0.0001. We train ResNet-18 classifiers for 120 epochs and multiply the learning rate by 0.1
at epochs {30, 60, 90}.

Data Augmentation. For CIFAR-10/100, we use standard data augmentation akin to [65]. That is, we zero-pad images
with 4 pixels on each side, take a random crop of size 32 ⇥ 32, and then mirror the resulting image horizontally with 50%
probability. We use such data augmentation for both training the generative and the classifier models. Hence, our normalizing
flows are capable of encoding-decoding operations on augmented samples as well. Advanced data augmentation baselines
we use in Table 1 [9, 66], also include the same standard data augmentations. However, the VAE-GAN based approach [53]
does not use data augmentation in their generative model. To provide a more direct comparison between the performance of
two generative models, in §B.2 we conduct an additional study without any data augmentations.

A.3. Metrics

Fréchet Inception Distance. FID [20] aims at comparing the synthetic samples x ⇠ pg—where pg denotes the distribution
of the samples of the given generative model, with those of the training data of x ⇠ pd in a feature space. The samples are
embedded using the first several layers of the Inception network. Assuming pg and pd are multivariate normal distributions,
it then estimates the means mg and md and covariances Cg and Cd, respectively for pg and pd in that feature space. Finally,



FID is computed as:

DFID(pd, pg) ⇡ d2((md, Cd), (mg, Cg)) = kmd �mgk22 + Tr(Cd + Cg � 2(CdCg)
1
2 ), (FID)

where d2 denotes the Fréchet Distance. Note that as this metric is a distance, the lower it is, the better the performance. We
used the implementation of FID6 in PyTorch.

B. Additional Results
B.1. Results on MNIST

Table 9 summarizes our results on MNIST in full data regime. Although the baseline has a very good performance on this
dataset, we observe improved generalization.

Perturbation Train Accuracy Train Loss Test Accuracy Test Loss
Standard 99.80 0.0069 99.24 0.0288
Randomized-LA, `=`1, ✏=0.15 99.78 0.0076 99.28 0.0262
Adversarial-LA, `=`1, ✏=0.05,↵=0.01, k=10 99.26 0.0230 99.43 0.0216

Table 9. Train and test accuracy (%) as well as loss on MNIST. Comparison with standard training, versus our latent-space perturbations.

B.2. Additional Results on CIFAR-10
Results without Data Augmentation. To provide a direct comparison between two generative models and eliminate the
effect of data augmentation, we run additional experiments. Table 10 shows results for our latent perturbations without any
data augmentation to train the normalizing flow and the classifier. In line with our FashionMNIST results in §5.3, we observe
that both randomized and adversarial latent attacks overperform the standard baseline and the VAE-GAN based approach.

Method Accuracy
Standard 49.8
VAE-GAN 49.4
Randomized-LA 54.9
Adversarial-LA 58.2

Table 10. Test accuracy (%) on CIFAR-10, in the low-data regime (5% of training samples) without any data augmentation.

Results with ResNet-20. Table 11 summarizes our results using the ResNet-20, on CIFAR-10. Inline with our ResNet-18
results in §5.1, we observe that both randomized and adversarial latent attacks overperform the standard baseline.

Method Accuracy
Standard 65.6 –
Randomized-LA, `=`2, ✏=25. 72.7
Adversarial-LA, `=`2, ✏ = .5 77.1

Table 11. Test accuracy (%) on CIFAR-10 using ResNet-20, in the low-data regime (5% of the training set).

Results with Different Attack Parameters. In Table 12, we provide results with varying hyperparameters for the different
attacks. Observe that for Adversarial-LA, in the high perturbation setting—where ✏ = 2.0, the classifier still didn’t fully fit
to the training set, but performance in the test set is above the standard baseline.

6
https://github.com/mseitzer/pytorch-fid

https://github.com/mseitzer/pytorch-fid


Multi-step Training. We run additional experiments where we sequentially apply different attack hyperparameters in
multi-step training with weaker perturbations to increase the performance on the test set. The results are listed in Table
12, denoted with +.

Perturbation Train Accuracy Train Loss Test Accuracy Test Loss
Baselines:
Standard 100.0 0.002 95.2 0.194

PGD, `=`2, ✏=2.0,↵=0.5, k=10 61.13 0.895 75.7 0.731

PGD, `=`1, ✏=0.03,↵=0.008, k=10 77.3 0.521 86.3 0.442

Ours:
Randomized-LA, `=`2, ✏=10.0 99.8 0.007 95.8 0.161

Randomized-LA, `=`1, ✏=0.25 99.5 0.015 96.3 0.142

+Randomized-LA, `=`1, ✏=0.15 100.0 0.002 96.4 0.133

Adversarial-LA, `=`2, ✏=1.0,↵=0.5, k=3 99.9 0.005 96.6 0.126

Adversarial-LA, `=`2, ✏=2.0,↵=1.5, k=2 89.1 0.214 95.8 0.134

+Adversarial-LA, `=`2, ✏=1.0,↵=0.75, k=2 99.2 0.030 96.5 0.114

+Adversarial-LA, `=`2, ✏=0.75,↵=0.5, k=2 99.7 0.011 96.7 0.115

+Randomized-LA, `=`1, ✏=0.25 100.0 0.002 96.5 0.132

+Randomized-LA, `=`2, ✏=10.0 100.0 0.002 96.6 0.131

Table 12. Train and test accuracy (%) as well as loss on CIFAR-10 using ResNet-18. All of the models are trained with the same
hyperparameters listed in §A.2. Perturbations listed with the + sign indicates a multi-step training. For example, last row lists the result
of the model trained with P `2

adv, ✏ = 2.0,↵ = 1.5, k = 2 for 130 epochs, P `1
rand, ✏ = 0.25 for 40 epochs and P `2

rand, ✏ = 10.0 for 30
epochs. Note that, regardless of multi-step training, the hyperparameters, including the total number of training epochs (= 200), remain
fixed across the experiments.


