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Appendix
In the supplementary materials, we discuss the ablation

studies and implementation details that are not elaborated in
the main paper. Section A highlights our FASA largely re-
duces the classification error. Section B analyzes some ab-
lation studies of the adaptive feature sampling module. Sec-
tion C validates the memory- and time-efficiency of FASA.
Section D presents the clustering results used in the feature
space. Section E provides the performance of FASA un-
der the recently proposed APFixed and APPool metrics [8].
Section F reports our implementation details of feature aug-
mentation methods. Section G compares FASA with an-
other instance-level re-sampling based approach NMS re-
sampling [20]. Section H shows the visualization result of
FASA.

A. Error Analysis of Long-Tailed Instance
Segmentation: Classification Error Dom-
inates

In the main paper, we apply FASA only to the classifi-
cation branch of Mask R-CNN. But why the choice? How
does this simple mechanism impact performances of other
branches like detection? To answer such questions, we need
a detailed error analysis other than the default, single metric
mean-average precision (mAP). We use the recent TIDE [1]
toolbox to report six error metrics for long-tailed instance
segmentation.

Table 1 outlines the six error metrics on large-scale
LVIS dataset. We see that for the Mask R-CNN base-
line [12], classification error is the main bottleneck for
long-tailed instance segmentation when compared to other
error types, e.g., localization error. This explains our use
of FASA to the classification branch of Mask R-CNN. Ob-
viously, augmenting classification branch only will not in-
cur a high cost. Performance-wise, we do see a significant
reduction in classification error (from 25.10% to 20.74%)
without deteriorating other errors much. With more budget,
one could apply FASA to augment other branches of Mask
R-CNN with the hope of more gains in all error metrics.

B. Ablation on Adaptive Feature Sampling

B.1. Initial Feature Sampling Probabilities

To initialize our adaptive virtual feature sampling pro-
cess, we assigned class-wise sampling probabilities based
on inverse class frequency. This scheme favors rare-class
feature augmentation at the beginning, and does not rely on
too many assumptions about skewed data distribution. An-
other sampling scheme that has minimal assumption of data
distribution is based on uniform class distribution.

Table 2 compares the two schemes empirically. We see
that both the uniform initialization and the inverse class fre-
quency initialization boost the performance compared with
the no augmentation baseline. Overall, the inverse class fre-
quency initialization approach achieves better overall mask
mAP. The APr and APf results of uniform initialization are
slightly worse than initialization based on inverse class fre-
quency. So we use the initialization based on inverse class
frequency by default for its effectiveness and simplicity.

B.2. Performance Metric for Sampling Adaptation

In the main paper, we propose a virtual feature sampling
approach that is adapted to the validation loss rather than
validation metric. This is to avoid the large computational
cost from frequent metric evaluation on large-scale dataset.
Concretely, evaluating the validation metric of mAP on the
dataset takes nearly 45 minutes, which is very expensive if
we were to conduct it in each epoch. To test how much we
can gain from adapting to the true performance metric, we
compare the use of the two supervisory signals on a smaller
task. We choose the long-tailed image classification task
on CIFAR-100-LT [3], a much smaller dataset than LVIS.
Evaluating per-class accuracy is as efficient as evaluating
the loss on CIFAR-100-LT validation set. Table 3 shows a
marginal improvement from using the performance metric,
which when translated to large-scale dataset, may not be
worth the large cost for metric evaluation.



Table 1: Error analysis of Mask R-CNN [12] with and without FASA. We use the TIDE [1] toolbox and report the six error types (%) on
LVIS v1.0 validation set: classification error (Ecls), location error (Eloc), both classification and location error (Eboth), duplicate detection
error (Edupe), background error Ebkg and missed ground truth error (Emiss). We observe the dominance of Ecls for Mask R-CNN, and
hence apply FASA only to the classification branch of Mask R-CNN at minimum cost. This leads to big improvements in Ecls already. We
expect more gains in Ecls and other error metrics by augmenting other branches of Mask R-CNN if given more computational budget.

Method Ecls Eloc Eboth Edupe Ebkg Emiss

Mask R-CNN 25.10 6.71 0.59 0.36 3.17 7.15
+ FASA 20.74 6.80 0.50 0.41 3.48 7.29

∆ -4.36 +0.09 -0.09 +0.05 +0.29 +0.14

Table 2: Comparing different initialization schemes of our virtual
feature sampling probabilities. AP, APr, APc and APf refer to the
mask mAP metrics (%) for overall, rare, common and frequent
class groups. The symbol ‘FS’ denotes to our adaptive Feature
Sampling module.

FS Initial sampling probability AP APr APc APf

7 7 22.3 12.7 21.7 26.9
3 Uniform distribution 23.2 15.1 23.4 26.6
3 Inverse class frequency 23.7 17.8 22.9 27.2

Table 3: Comparing the use of different performance metrics (val-
idation loss vs. metric) for adaptive feature sampling on CIFAR-
100-LT [3] dataset. The average and standard deviation of classi-
fication accuracy are from 3 runs.

Perf. measurement Accuracy (%)

Validation loss 43.7 ± 0.25
Validation metric 43.9 ± 0.38

Table 4: Comparing the group-wise and class-wise feature sam-
pling adaptation on CIFAR-100-LT [3] dataset. The average and
standard deviation of classification accuracy are from 3 runs.

Sampling adaptation Accuracy (%)

Group-wise 43.7 ± 0.25
Class-wise 43.3 ± 0.85

B.3. Group-wise vs. Class-wise Adaptation

By default, we adjust the feature sampling probability for
each class group rather than each class. One of the reasons
is that some classes may be missing for performance evalu-
ation, e.g., on LVIS validation set. This makes it impossible
for loss-adapted sampling probability adjustment for every
class. But what if all classes are available for evaluation,
appearing on both training and validation sets?

We again test on the CIFAR-100-LT [3] dataset that
meets the requirement. In this case, class grouping is not a
must anymore, and our goal is to see if group-wise sampling
adaptation still holds its benefits over class-wise sampling
adaptation. Table 4 gives a positive answer. We observe that
group-wise sampling adaptation performs better and has a
lower variance since it relies on the stabler group-wise loss
average rather than the noisy per-class loss.

Table 5: Comparison of training memory Mtrain and training
time Ttrain required, with and without FASA on LVIS v1.0.

Method FASA Mtrain (GB) Ttrain (s/iter)

Mask R-CNN + RFS
7 11.1 0.768 ± 0.04
3 12.4 0.792 ± 0.05

C. Speed Analysis
Table 5 further validates the memory- and time-

efficiency of our FASA approach. We see that FASA adds
only a small amount of memory, which is used to maintain
the online feature mean and variance of observed training
samples. Thus the extra memory is constant and dependent
only on the feature dimension. FASA is also found to incur
a very small time cost.

D. Visualizing Class Grouping Results
Recall our feature sampling probabilities are adjusted in

a group-wise manner. The class groups are formed by the
Mean-shift [6] clustering algorithm. Figure 1 presents some
clustering results, where visually similar or semantically re-
lated classes stay close in the feature space (e.g., “hairnet”
and “visor”). In addition, the co-occurrent classes also tend
to stay close (e.g., “pillow” and “loveseat”). Intuitively, re-
lated classes are better suited to have their sampling proba-
bilities adjusted together.

E. Evaluation with APFixed and APPool

The mean average precision metric (denotes as APOld

in the following) is the default evaluation metric for the
instance segmentation task [16, 11]. Recently, Dave et
al. [8] argued that the APOld metric is sensitive to changes in
cross-category ranking, and introduced two complementary
metrics APFixed and APPool to replace APOld for LVIS [11]
dataset. Dave et al. [8] found that some methods improve
APOld but have less impact on APFixed and APPool. The
APOld metric limits the maximum detection results per im-
age, resulting in cross-category competition. To address
this issue, the APFixed metric limits the maximum detec-
tion results per class on the dataset instead. To highlight
the score calibration property, Dave et al. [8] also proposed
APPool metric that is class-agnostic and evaluates detection



Figure 1: t-SNE [18] visualization of class groups. In the black dashed boxes, classes are often semantically related or
visually similar. In the blue ellipse, we find classes that exhibit strong co-occurrence, e.g., between ‘pillow’ and ‘bedspread’.

results across all categories together. Since APPool is class-
agnostic, the evaluation is influenced more heavily by fre-
quent classes rather than rare classes.

We provide the experimental results of FASA under the
APFixed and APPool in Table 6. We observe that FASA con-
sistently boosts the performance under APFixed and APPool,
especially for the rare categories. For APFixed, FASA im-
proves overall AP and rare-class APr by 1.1% / 1.7% re-
spectively for Mask R-CNN and 1.3% / 2.4% for Cascade
Mask R-CNN. For APPool, FASA still obtains 2.9% gains
in APr for Mask R-CNN and 2.0% for Cascade Mask R-
CNN. Since APPool is mainly affected by the frequent class,
the overall AP improvements are small. The APFixed and
APPool results also demonstrate that FASA largely improves
the performance of rare classes without compromising the
common classes and frequent classes.

F. Implementation Details

Our implementation is based on the Mask R-CNN [12]
backbone, which is the ImageNet pre-trained ResNet-
50 [13] with a FPN [15] neck and a box head with two sib-
ling fully connected layers for RoI classification and regres-
sion. We apply random horizontal image flipping and multi-
scale jittering with the smaller image sizes (640, 672, 704,
736, 768, 800) in all experiments. All models are trained

with standard SGD on 8 NVIDIA V100 GPUs. We follow
the default settings in MMDetection [5] to set other hyper-
parameters such as learning rates and training schedules.

Here we also describe the implementation details of the
feature augmentation methods listed in Table 2 of the main
paper. We detail the hyper-parameters of these approaches
and our searched optimal choices in Table 7.
SMOTE [4]. The SMOTE algorithm interpolates neighbor-
ing features (i.e., feature embeddings of region proposals)
in the feature space. Specifically, for given features xi, we
consider the k = 5 nearest neighbours {xj} based on cosine
feature distance. Then we interpolate new features as:

x̂ = λ · xi + (1− λ) · xj , (1)

where λ is a random value in (0, 1].
MoEx [14]. Similar to SMOTE [4], the MoEx is also an
interpolation-based augmentation method. As MoEx was
developed for the image classification task, we transfer it to
the instance segmentation task with the following modifica-
tion: 1) we applied MoEx augmentation in the classifier of
the Mask R-CNN [12] framework, 2) we searched the opti-
mal value of parameters on the LVIS dataset and the results
are shown in Table 7.
InstaBoost [10]. InstaBoost is an adaptive copy-and-paste
FA method based on a location probability map. Since In-



Table 6: Results of Cascade Mask R-CNN [2] with and without FASA under the recently proposed APFixed and APPool metric [8]. We
report the results on the LVIS [11] validation set. AP, APr, APc and APf refer to the mask mAP metrics (%) for overall, rare, common and
frequent class groups. The symbol APOld refers to the standard mean average precision (mAP) metric. We observe FASA offers consistent
performance boost under the APFixed and APPool, especially for the rare categories. All the models use the ResNet-101 [13] backbone and
Repeat Factor Sampling (RFS) [11].

APFixed APPool

Method FASA AP APr APc APf AP APr APc APf

Mask R-CNN [12]
7 27.1 20.3 26.9 30.3 27.2 9.0 22.5 27.5
3 28.2 (+1.1) 22.0 (+1.7) 28.3 30.9 27.4 (+0.2) 11.9 (+2.9) 23.0 27.8

Cascade Mask R-CNN [2]
7 28.7 22.2 28.3 32.0 28.9 10.4 24.2 29.4
3 30.0 (+1.3) 24.6 (+2.4) 29.8 32.4 29.2 (+0.3) 12.4 (+2.0) 25.0 29.6

Table 7: Parameters tuned for the feature augmentation methods in Table 2 of the main paper.

Method Param Description Value

MoEx, CVPR’21 [14]
p MoEx probability 1.0
ε Epsilon constant for standard deviation 1e−5

Liu et al., CVPR’20 [17]
s Scaling factor 20
ma Angular margin 0.1

Chu et al., ECCV’20 [7]
Ts Threshold to extract the class-specific features 0.3
Tg Threshold to extract the class-generic features 0.6

Yin et al., CVPR’19 [21]
αrecon Coefficient of the reconstruction loss 0.5
αreg Coefficient of the regularization loss 0.25

staBoost was already developed for the instance segmenta-
tion task, we use its default hyper-parameters.
Liu et al. [17]. Liu et al. [17] propose to transfer the angular
distribution of face recognition loss such as CosFace [19] or
ArcFace [9]. We select ArcFace for re-implementation:

L = − 1

N

N∑
n=1

log
es(cos(θy+αy+ma))

es(cos(θy+αy+ma)) +
∑C
j 6=y e

s(cos(θj+αy))

(2)
The symbol θy refers to the angle between the input feature
and the weight of the classifier. The symbol αy means the
extra angular that transfers from head class to tail class. As
shown in Eq (2), two parameters are involved: the symbol s
means the scaling factor applied to logit, and the symbolma

refers to the angular margin. We tune these two parameters
and show the results in Table 7.

We observed that since the instance segmentation task
has to deal with the special background class, the margin-
based ArcFace loss is unfortunately very sensitive to hyper-
parameter choices of ma. So margin-based augmenta-
tion [17] does not perform well on LVIS. Different from
Liu et al. [17], our FASA is not limited to the form of loss
functions.
Chu et al. [7]. Chu et al. [7] mixed the class-specific fea-
tures of each class and the corresponding class-generic fea-
tures of ‘confusing’ classes to synthesize new data sam-
ples. The definitions of ‘class-generic’ and ‘class-specific’
are based on the threshold masking of class activation map

(CAM) [22]. For each real sample in the tail class, the au-
thors sample Na images from its Nf confusing classes.

During the re-implementation, we found that the differ-
ence in batch size between the classification and instance
segmentation tasks limited the performance of Chu et al.
[7] when transferred to the instance segmentation task. The
classification task has a large batch size (e.g., 128) that
can meet the demand of picking confusing categories (e.g.,
Na = Nf = 3). However, instance segmentation mod-
els are limited by small batch size (e.g., 2) and there is no
guarantee that the top confusing categories will appear in
the same batch. Compared with Chu et al. [7], our FASA
builds feature banks for each category to cache the features
of the previous batch, thus getting rid of the small batch
limitation.

Yin et al. [21]. Yin et al. [21] is a feature augmentation
method designed for the face recognition task. A total of
three loss functions are included: face classification loss
Lsfmx, reconstruction loss Lrecon and regularization loss
Lreg. The reconstruction loss Lrecon is critical to train the
discriminative feature encoder and decoder. To transfer into
the instance segmentation task, we apply the reconstruction
loss to the feature embedding of each positive region pro-
posal. Besides, Yin et al. [21] need a two-stage training
pipeline. In the first stage, the authors fix the backbone and
generate new feature samples to train the classifier. In the
second stage, the authors fix the classifier and update the
other components. Such a two-stage approach introduces



Table 8: Comparing our FASA with NMS Re-sampling [20] on
LVIS v1.0 validation set. The symbol ‘NR’ denotes the NMS Re-
sampling approach. AP, APr, APc and APf refer to the mask mAP
metrics (%) for overall, rare, common and frequent class groups.

NR FASA AP APr APc APf

7 7 19.3 1.2 17.4 29.3
7 3 22.6 10.2 21.6 29.2
3 7 21.7 8.6 20.4 29.0
3 3 22.9 11.1 21.8 29.2

additional training time cost. Compared to Yin et al. [21],
our FASA leverages end-to-end training and therefore more
efficient.

G. Comparison with NMS Re-sampling [20]

NMS Re-sampling [20] is proposed to adjusting the
NMS threshold for different categories during the train-
ing. Specifically, the NMS thresholds for the fre-
quent/common/rare categories are set as {0.7, 0.8, 0.9}with
the increasing trend. Such a mechanism is beneficial to pre-
serve more region proposals from the rare classes and sup-
press the number of proposals from frequent classes.

We compare the FASA with NMS Re-sampling in Ta-
ble 8. The first line refers to the Mask R-CNN [12] baseline
without any re-sampling or augmentation method. From the
second and the third line, we see that both FASA and NMS
Re-sampling achieve better performance than the baseline
method. FASA performs slightly better than NMS Re-
sampling, especially for the rare classes. We believe such
a performance gap is due to NMS Re-Sampling is mainly
in adjusting the sampling weights of the current data sam-
ples, while FASA can further generate new virtual samplers.
Also, the bottom results demonstrate that FASA as an or-
thogonal module can combine with NMS Re-sampling to
further boost the performance.

H. Result Visualization

To better interpret the result, we show the segmentation
results of the selected rare classes in Figure 2. We observe
that without FASA, the prediction scores for rare classes are
small or even missed. On the contrary, with the help of our
FASA, the classification results of the rare classes become
accurate.
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Figure 2: Prediction results of Mask R-CNN framework without and with FASA on the LVIS v1.0 validation set. We select
six rare classes ‘saucepan’, ‘crouton’, ‘date (fruit)’, ‘koala’, ‘softball’ and ‘bonnet’ to visualize. We observe that with the
help of FASA, Mask R-CNN exhibits more correct classification results than the baseline.
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