
DRÆM – A discriminatively trained reconstruction embedding

for surface anomaly detection

Supplementary material

Vitjan Zavrtanik Matej Kristan Danijel Skočaj
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1. MVTec qualitative examples

Figures 1,2 and 3 show qualitative examples for each in-

dividual class of the MVTec anomaly detection dataset [1].

The qualitative comparison of DRÆM to the recent US [2]

and RIAD [7] methods is shown in Figure 4. In Figure 5 the

detection ability of DRÆM on various atypical anomalous

images is shown. The images in Figures 1, 2, 3, 4 and 5 are

best viewed zoomed in.

2. DAGM qualitative examples

Figures 6 and 7 show qualitative examples for each class

of the DAGM dataset [6]. The anomaly maps generated by

the method by Božič et al. [3] are shown in addition to the

DRÆM anomaly maps for comparison and to demonstrate

the high accuracy localization ability of DRÆM. Due to the

small size of anomalies, the images in Figures 6, and 7 are

best viewed zoomed in.

3. Simulated anomaly training of state-of-the-

art supervised methods

We trained the recent supervised anomaly detection

methods [3, 5] on the MVTec [1] dataset using the synthetic

anomalies generated by the proposed anomaly simulation

method. The results are listed in Table 1. DRÆM outper-

forms both evaluated methods by a large margin, indicating

that besides generating synthetic labels, also the entire ar-

chitecture combining reconstructive and discriminative sub-

architectures is needed to achieve best results.
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(a) Capsule (b) Bottle

(c) Grid (d) Leather

(e) Pill (f) Tile

Figure 1: DRÆM qualitative examples for the MVTec dataset [1]. The original image, the anomaly overlay, the output

anomaly map and the ground truth map are shown. Best viewed zoomed in.
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(a) Transistor (b) Zipper

(c) Cable (d) Carpet

(e) Hazelnut (f) Metal nut

Figure 2: DRÆM qualitative examples for the MVTec dataset [1]. The original image, the anomaly overlay, the output

anomaly map and the ground truth map are shown.
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(a) Screw (b) Toothbrush

(c) Wood

Figure 3: DRÆM qualitative examples for the MVTec dataset [1]. The original image, the anomaly overlay, the output

anomaly map and the ground truth map are shown.
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(a)

(b)

Figure 4: Qualitative comparison of DRÆM to the recent anomaly detection methods US [2], RIAD [7] and PaDim [4] on the

MVTec dataset [1]. The original image (I), the anomaly overlays for all methods and the ground truth map (GT) are shown.
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Figure 5: The output anomaly maps on entirely anomalous images. The input image and the output of DRÆM are shown

in the first and second row, respectively. An image filled with zeros, a uniform noise image, an anomaly-free image with

added uniform noise and a completely out-of-distribution image are shown from left to right. DRÆM correctly marks the

vast majority of pixels as anomalous.
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(a) Class1 (b) Class2

(c) Class3 (d) Class4

(e) Class5 (f) Class6

Figure 6: Qualitative examples for the DAGM dataset [6]. The original image I, the DRÆM anomaly map, the anomaly map

produced by Bozic et al. [3] and the ground truth map GT are shown.
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(a) Class7 (b) Class8

(c) Class9 (d) Class10

Figure 7: Qualitative examples for the DAGM dataset [6]. The original image (I), the DRÆM anomaly map, the anomaly

map produced by Bozic et al. [3] and the ground truth map (GT) are shown.
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