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S1 Background

What is structural biology?
Structural biology is a field of molecular biology that primarily studies the structure of cellular macromolecules,
particularly proteins and nucleic acids, by microscopical [47, 64], spectroscopical [26, 68], computational [37, 71, 72], or
bioinformatical [50, 57] techniques. Macromolecules carry out the basic functions of cellular process. By understanding
how they acquire their specific structure and how the alteration of their structure affects their function and dynamics,
structural biologists are able to decipher how the function/dysfunction of macromolecules and their networks relates to
the health/disease states.

What is cryo-electron tomography?
Cryo-Electron Tomography (cryo-ET) is a cell microscopy imaging technique that produces 3D views of cellular
samples at nanometer resolution (< 4 nm) [65]. The cellular samples are first vitrified at cryogenic temperature (<
-150 oC). The non-crystalline cryogenic condition keeps the biological structures in the sample undisrupted during the
imaging. By contrast, the conventional chemical fixation or dehydration will disrupt the biological structures. After
vitrification, the sample is placed in a grid will be thinned by cryo-focused-ion-beam milling [21] to carve out a 100-250
nm lamella region before imaging.

Figure S1 shows the concept of cryo-ET imaging and reconstruction. The electron beams passing through the cell
sample placed under a cryo-transmission electron microscope. The electrons are then detected by an electron detector.
The detection results in a projection image. The projection image is formed as electrons are less likely to pass through a
thick structural region. In cryo-ET, the cell sample is tilted through a series of angles, typically at 1o to 3o tilt step from
−60o to +60o. At each angle view, a projection image is produced.

e-

e-

e-+60o

-60o

Electron beam

Cell sample

Projection image Tomographic reconstruction

Tilt series

Missing wedge: 30o

Tilt

Ice slab

Figure S1: Illustration of cryo-ET imaging and reconstruction processes.

After acquiring a tilt-series of projection images, the 3D view of the cell sample can be reconstructed computationally
[19, 45] through algorithmic steps of artifact detection and correction, alignment, back projection. The final 3D image
from tomographic reconstruction is called a tomogram (Figure S2), which is a grayscale volume containing all the
structural objects inside the field of view. Because a raw tomogram is very large such as of size 6000× 6000× 1500
voxels, the computational data analysis is usually performed on the subtomogram level, of which a subtomogram
(Figure S2) is a 3D cubic subvolume potentially containing a macromolecule extracted from a tomogram.

How is cryo-ET different from cryo-EM?
Cryo-electron microscopy (cryo-EM) is a closely related technique to cryo-ET. Similar to cryo-ET, cryo-EM images are
acquired using a cryo-transmission electron microscope. However, the objective of cryo-EM is different from cryo-ET.
Cryo-EM aims to image isolated and purified macromolecules in order to recover high-resolution structure of a known
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Tomogram

Subtomogram

Extraction

Figure S2: Illustration of extracting a subtomogram from a tomogram. The white box corresponds to the location of the
extracted subtomogram.

type of macromolecule [6]. Cryo-EM only takes one projection image of the sample. Since the purified macromolecules
lay in random poses on the grid, the 2D view of them can be aggregated and aligned to 3D structure [15].

In contrast, cryo-ET images the cell sample in situ to provide a complete structural description of the cell’s native
molecular landscape. In situ cryo-ET enables the study of both the known and unknown macromolecular structures and
their spatial organization and interaction with cellular organelles, in their native cytoplasm environment [46], which is
not attainable by any other imaging techniques including cryo-EM.

Figure S3: Sample slice and Jim-Net embedding results of a cryo-ET tomo-
gram of SARS-CoV-2 virions released from VerE6 cells [33].

Biological applications of cryo-ET:
Because of the unique strength of cryo-
ET in visualizing wide range of 3D
subcellular structures in situ, cryo-ET
researchers have successfully revealed
the native structure of large molecu-
lar complexes such as human nuclear
pore complexes [44], chemoreceptor ar-
rays [41], and chemotaxis core signal-
ing complex [4] or organelles such as
chloroplast [12], apicoplast [36], mam-
malian primary cilia [30]. Other than
resolving native subcellular structures,
cryo-ET has provided insights into im-
portant cellular functions including neu-
ral proteasome recruitment [18], dynein
recruitment in intracellular trafficking
network [16], and synaptic vesicle teth-
ering [13].

Recently, cryo-ET has been applied ex-
tensively in studying SARS-COV-2, the
virus that caused the COVID-19 pan-
demic. Cryo-ET researchers have re-
vealed the native structure [63] (Figure S3) and distribution of SARS-COV-2 spike proteins [29, 40] and ribonucleo-
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proteins [69], and the viral replication compartment and the budding mechanism of SARS-COV-2 [33]. These critical
structural insights provide meaningful clues into the drug and treatment design against SARS-COV-2 infection.

Medical applications of cryo-ET: Cryo-ET also benefits medical diagnostics to complement conventional methods.
For example, the conventional electron microscopy tool can only achieve 70% accuracy in detecting primary ciliary
dyskinesia, a model using cryo-ET data of human ciliary structure samples has clarified the previously unresolved
primary central pair complex abnormalities by conventional EM [39]. Cryo-ET imaging of platelet samples from
ovarian cancer patients has revealed alternations of the length of microtubules and the number of mitochondria compared
with healthy control, which lead to diagnostic accuracy of 87.0%. Other cryo-ET researches have identified structural
defects in disease states including pathogen infection [24, 51], Huntington’s disease [2], Parkinson’s disease [67], and
Leigh syndrome [61].

What are the cause and effect of the missing wedge?
The missing wedge effect is caused by the limited tilt-angle range during the imaging process (Figure S1). The cell
sample cannot be imaged at the full 180o tilt-angle range [48] because of (1) the structure of the sample holder and (2)
increasing sample thickness at high tilt-angles. ±60o to ±70o are typically used in cryo-ET. Because of the missing
information at missing tilt-angles, the reconstructed tomogram will show the missing wedge effect such as elongation
and blurring of the objects along the z-axis [48]. The image distortions caused by the missing wedge effect must be
taken into consideration during data processing.

Why is the cryo-ET image noise high?
The high noise level of cryo-ET data (as shown in Figure S2) is mainly caused by two factors. First, unlike purified
macromolecules imaged in cryo-EM, the cell sample imaged in cryo-ET is relatively much thicker with very diverse
structures in the cytoplasm environment [34]. Second, because the cell sample is imaged multiple times at different
tilt-angle views, the electron dose used is low [9] to prevent excessive electron beam damage to the cell sample for
subsequent imaging. The relatively high sample thickness and low electron dose for imaging together result in the
high noise level of cryo-ET data. Therefore, computational algorithms robust to noise are critical for cryo-ET data
processing.
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S2 Method

S2.1 Fine transformation regularization loss

Intuitively, coarse-to-fine alignment architectures should perform finer transformations at later layers to fine-tune the
alignment, but in standard alignment losses, there is no direct incentive for the network to progressively propose
finer transformations at the later layers. We craft a regularization loss LR to penalize the network from proposing
large transformations at later stages of the alignment network. By penalizing larger transformations, the space of
transformation parameters that the network proposes tends to be drastically reduced, which should help stabilize and
speed up training.

The regularization loss, LR, penalizes rotations according to the L2
2 distance that each point in a unit n-sphere moves.

More formally, let V be a unit n-sphere (n is 2 or 3), let s be a shift, and A be a matrix. Note, s and A together define
an affine transformation.∫
V

||(Ax+ s)− x||22dv =

∫
x∈V

(Ax+ s− x)T (Ax+ s− x)dx

=

∫
x∈V

((A− I)x+ s)T ((A− I)x+ s)dx

=

∫
x∈V

xT (A− I)T (A− I)x+ 2sT (A− I)x+ sT sdx

=

∫
x∈V

xT (A− I)T (A− I)xdx+ 2sT (A− I)

∫
x∈V

xdx+

∫
x∈V

sT sdx

because V is symmetric and centered at 0, we have

=

∫
x∈V

xT (A− I)T (A− I)xdx+

∫
x∈V

sT sdx

=

∫
x∈V

xT (A− I)T (A− I)xdx+ V sT s

=

∫
x∈V

xT (ATA−A−AT + I)xdx+ V sT s

=

∫
x∈V

xTATAxdx− 2

∫
x∈V

xTAxdx+

∫
x∈V

xTxdx+ V sT s

because the trace of a scalar is the original scalar, we have

=

∫
x∈V

Trace(xTATAx)dx− 2

∫
x∈V

Trace(xTAx)dx+

∫
x∈V

xTxdx+ V sT s

because of the cyclic property of traces, we have

=

∫
x∈V

Trace(ATAxxT )dx− 2

∫
x∈V

Trace(AxxT )dx+

∫
x∈V

xTxdx+ V sT s

because traces can be swapped with integrals, and A and ATA are not functions of x, we have

= Trace(ATA

∫
x∈V

xxT dx)− 2 · Trace(A

∫
x∈V

xxT dx) +

∫
x∈V

xTxdx+ V sT s

because V is symmetric and centered at 0 therefore the integral over the off-diagonal entries of xxT is 0. Additionally,
because V is an n-sphere we have

∫
x∈V x

2
i dx = 1

n

∫
x∈V x

Txdx. Combining these two observations, we have

= Trace(ATA
1

n
I

∫
x∈V

xTxdx)− 2 · Trace(A
1

n
I

∫
x∈V

xTxdx) +

∫
x∈V

xTxdx+ V sT s

= Trace(ATA)
1

n

∫
x∈V

xTxdx− 2 · Trace(A)
1

n

∫
x∈V

xTxdx+

∫
x∈V

xTxdx+ V sT s
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=

∫
x∈V x

Txdx

n
(n+ Trace(ATA)− 2 · Trace(A)) + V sT s

assuming V is 3 dimensional, we have

=
1

3
· 4π

5
(3 + Trace(ATA)− 2 · Trace(A)) +

4π

3
sT s

=
4π

3
(
1

5
(3 + Trace(ATA)− 2 · Trace(A)) + sT s)

assuming A is a rotation matrix, we have

=
4π

3
(
1

5
(3 + Trace(I3)− 2 · Trace(A)) + sT s)

=
4π

3
(
2

5
(3− Trace(A)) + sT s)

Using the above derivation we define the L2
2 regularization loss for a 3-d rigid transformation parameterized by φ with

corresponding shift sφ and rotation matrix Aφ as follows:

LR(φ) =
4π

3
(
2

5
(3− Trace(Aφ)) + sTφ sφ) (1)

Notice that this loss is differentiable with respect to both the rotation matrix Aφ and the shift sφ, which means it is
amenable to gradient based optimization techniques.

Using an intermediate result from the above derivation we can also define a loss for arbitrary affine transformations
defined by a matrix Aφ and a shift sφ as follows:

LA(φ) =
4π

3
(
1

5
(3 + Trace(ATφAφ)− 2 · Trace(Aφ)) + sTφ sφ) (2)

S2.2 Soft inlier loss

The soft inlier loss computes localized feature correlations between a target image and a transformed source image;
Intuitively, if the sum of the correlations of learned features between a target and transformed source image pair is
high, then the alignment is in some way semantically meaningful image patches with similar features are nearby. In 2D
settings, the soft inlier loss utilizes the output from a correlation layer C(G) , c, a transformation function T , proposed
transformation parameters φ, a distance metric d, and an h× w × h× w identity mask mI defined as:

mI
ijkl =

{
1, if d((i, j), (k, l)) < t

0, otherwise
. (3)

The soft inlier loss is then computed as follows:

LSIL = −
∑
i,j,k,l

cijklT (mI, φ)ijkl. (4)

S2.3 Gaussian mixture model

We integrate Gaussian Mixture Models (GMMs) into Jim-Net’s clustering step. In the clustering step, the GMM is used
to assign each image a cluster. These cluster assignments are used for pairing images to be aligned by the classification
module and for providing a target for training the cluster predicting module.

GMMs are one of the most used clustering models. Intuitively, GMMs make two pivotal assumptions: first, the data
comes from k distinct underlying distributions; second each of the k underlying distributions is a normal distribution.

GMMs describe a dataset X ∈ <n×d where n is the number of data points and d is the dimension of the input features
as a probability distribution defined by the weighted sum of the probability density functions (pdfs) of k normal
distributions [52]. More formally, a GMM, Gµ,Σ,w, defines a probability distribution with pdf:

p(x|µ,Σ, w) =

k∑
i=1

wig(x|µi,Σi)

where g(·|µi,Σi) is the pdf of a Multivariate Gaussian Distribution with covariance matrix Σi and mean µi; we choose
notation that follows [52]. Note that the weighting, w, is constrained to be non-negative and to have its entries sum to
1; this enforces that Gµ,Σ,w describes a proper probability distribution. µ,Σ, and w are learned using the expectation
maximization algorithm.
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S2.4 Network architecture

We designed an end-to-end Convolutional Neural Network (CNN) architecture incorporating the components described
above: shared extractors for feature learning f (1), ..., f (m), cluster predicting moduleMCP, and coarse-to-fine alignment
module MAL.

Feature extractor: The shared feature extractors utilize stacked dilated convolution layers for convolution operations
and spectral pooling layers for feature map size reduction alternatively. For the convolution operation, we use a layer
with multiple dilated convolutions stacked in parallel. With multiple convolution operations at different dilation rates,
this layer has a large receptive field and has been shown to maintain high spatial resolution for dense pixel-level
matching tasks [59]. For reducing the feature map size, we use a spectral pooling layer that can resize a feature map to
an arbitrary size, not limited to a certain downsize factor such as 2. We reduce the feature map size progressively by
each spectral pooling layer: downsizing to 75% for the coarse alignment step and to 85% for the fine alignment step.
Additionally, the spectral pooling layer has been theoretically proven to preserve better spatial information as compared
to a max pooling layer [53].

Feature processing for clustering: Given a feature representation, fs|t we predict cluster assignment, `s, for s by
passing fs|t to classification module, MCP, composed of additional feature processing layers followed by a classifier.
After each stacked dilated convolution layer, the feature maps are processed by an additional convolution layer and
dimensionally reduced by a global max-pooling layer. The feature vectors are concatenated and processed by two fully
connected layers to output the final cluster assignment prediction. Outputs from the second last layer is used as feature
representations fX|X for the GMM. By utilizing feature maps from every stacked dilated convolution layer, we are able
to pass both low and high-level feature information to the classifier for better prediction.

Transformation regression for alignment: For the ith alignment G(i)(s, t) Jim-Net creates feature representations
f (i)(G(i−1)(s, t)) and f (i)(t) which are passed to a transformation regressor r(i). r(i) consists of a feature matching
layer, C(G) or C(L), followed by a CNN regressor and a spatial transformer [27].

Jim-Net’s architecture is outlined below. We define ‘SDC (Stacked Dilated Convolution) Same’ and ‘SDC Valid’ as
separate figures due to their common usage in Jim-Net. We also define the feature extraction components for the coarse
and fine alignment modules ‘Feature Extractor 1’ and ‘Feature Extractor 3’, respectively, as indexed in main document
Figure 2. In the architecture diagram, dotted lines represent weight sharing and arrows represent the output of one layer
being an input to another layer.

filters-3×3×3-1 Conv 
‘same’

filters-3×3×3-3 Conv 
‘same’

filters-3×3×3-4 Conv 
‘same’

filters-3×3×3-2 Conv 
‘same’

Concatenate

ELU

Batch Normalization

Input

Output

Figure S4: “SDC Same" Architecture. Each box represents a layer or composition of layers. “filters-3x3x3-d Conv
‘same’" represents a 3D convolutional layer with kernel size 3, dilation rate d, number of filters set to ‘filters’, and
‘same’ padding (padding of the same size of the layer input). The concatenate layer concatenates inputs channel wise,
“ELU" [8] is an ELU activation layer and “Batch Normalization" [25] is a batch normalization layer. The peach colored
boxes labeled ‘input’ and ‘output’ correspond to the input and output of the “SDC Same"
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filters-3×3×3-1 Conv 
‘valid’

Concatenate

ELU

Batch Normalization

filters-3×3×3-2 Conv 
‘same’’

Input

1x1x1 Crop 1x1x1 Crop 1x1x1 Crop 

filters-3×3×3-2 Conv 
‘same’

filters-3×3×3-2 Conv 
‘same’

Output

Figure S5: “SDC Valid" Architecture. “filters-3x3x3-d Conv ‘valid’" represents a 3D convolutional layer with kernel
size 3, dilation rate d, number of filters set to ‘filters’, and ‘valid’ padding (no padding). The “1x1x1 Crop" layer
represents a 3D cropping layer that crops 1 pixel from the start and end of each dimension. All other definitions are the
same as in Figure S4.
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Batch Normalization

SDC Same 4

ELU

Spectral Pool & filter
24x24x24

(20×20×20)

Batch Normalization

SDC Same 4

ELU

Spectral Pool & filter
18x18x18

(14×14×14)

Batch Normalization

SDC Same 8

ELU

Spectral Pool & filter
12x12x12

(10×10×10)

Batch Normalization

SDC Same 8

ELU

Spectral Pool & filter
8x8x8

(8×8×8)

Batch Normalization

512-3x3x3-1 Conv 
‘same’ 

ELU

32-3x3x3-1 Conv 
‘valid’

ELU

Batch Normalization

Global Max Pooling

32-3x3x3-1 Conv 
‘valid’

ELU

Batch Normalization

Global Max Pooling

32-3x3x3-1 Conv 
‘valid’

ELU

Batch Normalization

Global Max Pooling

32-3x3x3-1 Conv 
‘valid’

ELU

Batch Normalization

Global Max Pooling

32-3x3x3-1 Conv 
‘valid’

ELU

Batch Normalization

Global Max Pooling

Concatenation

Output M1 Output X1

Input

Figure S6: Feature Extractor 1 Architecture. Feature Extractor 1 is used for feature extraction during the coarse
alignment phase of the Alignment Module. “Global Max Pooling" represents a global max pooling operation that
pools across all indices to reduce the dimension to be the amount of channels. “Spectral Pool & filter Z × Z × Z
(Y × Y × Y )" represents a spectral pooling and filtering layer with output size Z × Z × Z which is cropped to be of
size Y × Y × Y .
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Batch Normalization

SDC Same 4

ELU

Spectral Pool & filter
28x28x28

(28×28×28)

Batch Normalization

SDC Same 4

ELU

Spectral Pool & filter
24x24x24

(24×24×24)

Batch Normalization

SDC Same 8

ELU

Spectral Pool & filter
20x20x20

(20×20×20)

Batch Normalization

SDC Same 8

ELU

Spectral Pool & filter
18x18x18

(14×14×14)

Batch Normalization

128-3x3x3-1 Conv 
‘same’ 

ELU

Spectral Pool & filter
16x16x16

(16×16×16)

Spectral Pool & filter
16x16x16

(16×16×16)

Spectral Pool & filter
16x16x16

(16×16×16)

Spectral Pool & filter
16x16x16

(16×16×16)

Concatenate

Batch Normalization

128-3x3x3-1 Conv  
‘same’

ELU

32-3x3x3-1 Conv 
‘valid’

ELU

Batch Normalization

Global Max Pooling

32-3x3x3-1 Conv 
‘valid’

ELU

Batch Normalization

Global Max Pooling

32-3x3x3-1 Conv 
‘valid’

ELU

Batch Normalization

Global Max Pooling

32-3x3x3-1 Conv 
‘valid’

ELU

Batch Normalization

Global Max Pooling

32-3x3x3-1 Conv 
‘valid’

ELU

Batch Normalization

Global Max Pooling

Concatenation

Output M2 Output X2

Input

Figure S7: Feature Extractor 3 Architecture. Feature Extractor 3 is used for feature extraction during the fine alignment
phase of the Alignment Module.
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Feature Extractor 1

X1M1

L2 Feature Norm

Global Correlation 

L2 Feature Norm

SDC Valid 256

Flatten

Feature Extractor 1

X1

L2 Feature Norm

Global Correlation

L2 Feature Norm

SDC Valid 256

SDC Valid 256 SDC Valid 256

Flatten

Concatenation

Dense 512

ELU

Dense 256

ELU

Dense 6

Dense 128

Sigmoid

Spatial Transformer Network

Feature Extractor 3

X2M2

L2 Feature Norm

Local Correlation 1 

L2 Feature Norm

SDC Valid 256

Flatten

SDC Valid 256

Feature Extractor 3

X2

L2 Feature Norm

Local Correlation 1 

L2 Feature Norm

SDC Valid 256

Flatten

SDC Valid 256

Concatenation

Dense 512

ELU

Dense 256

ELU

Dense 6

Dense 128

Sigmoid

Spatial Transformer Network

Concatenation

Dense 256

ELU

Batch Normalization

Batch Normalization

Dense K

Softmax

Cluster 
Prediction

Source Image Target Image

Aligned Image

Missing Wedge 
Mask

Coarsely Aligned 
Image

Figure S8: Jim-Net architecture. “Flatten" represents a layer that flattens the input tensor, “Dense X" is a linear layer
with X nodes, “Sigmoid" is a sigmoid activation layer, and “Spatial Transformer Network" is a spatial transformer layer
[27] constrained to proposing 3D rigid transformations. “Global Correlation" denotes a global correlation layer [54]
and Local Correlation 1 is a local correlation layer with radius 1.
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S3 Experimental validation

S3.1 Training details

We implemented the models in Pytorch [49] and Keras [7] backend by Tensorflow 2.0 [1]. We trained all models on a
computer with 4 NVIDIA GeForce Titan X Pascal GPUs and 48 CPU cores. For cryo-ET simulated dataset at SNR
100, we trained Jim-Net with a learning rate of 1 · 10−5 for 100 epochs using the Nadam optimizer [62] with β1 = 0.9,
β2 = 0.999, and ε = 1 · 10−7. Then, similar to the baseline method Gum-Net [70], we fine-tuned the trained model
from SNR 100 dataset on other datasets for 20 epochs with a learning rate of 1 · 10−6. Since the baseline clustering
methods DeepCluster [3] and PICA [22] had not been tested on cryo-ET data, we extended them to 3D versions by
trying different architectures, from simple ones to complex ones, and kept the one with the best performance. Then,
we trained the extended 3D network models in the same way as Jim-Net with the same optimizer and learning rate
till convergence. For the PF-PASCAL dataset, all the baseline methods were initialized with the ResNet-101 [20]
feature extraction backbone with its ImageNet [58] weights and fine-tuned on the PF-PASCAL dataset. We directly
took their reported per-class PCK accuracy on the PF-PASCAL dataset (Table S11). For a fair comparison, Jim-Net’s
alignment module was trained with the same feature extraction backbone initialization. More specifically, as one of
the baseline methods, WeakAlign [56], the feature extractor was cropped after the conv4-23 layer of ResNet-101 and
additionally, as in WeakAlign, the image alignment module was initialized with the weights from [55], which was
trained in a self-supervised fashion without access to annotations or class labels. We trained the model for 30 epochs
using the Adam optimizer [32] with a learning rate of 1 · 10−7, a weight decay of 0, and momentum terms of β1 = 0.9,
β2 = 0.999, and ε = 1 · 10−7. Early stopping was used to choose the model with the highest validation PCK score.
During each epoch, the clustering branch was warm started for 10 epochs with a learning rate of 1 · 10−4. Additionally,
the clustering branch had a separate learning rate of ε = 5 · 10−4.

For the alignment modules, we used a spatial transformer layer [27] with a 2D affine transformation for coarse
alignment and a thin plate spline transformation for fine alignment on the PF-PASCAL dataset. We used 3D rigid-body
transformations for both the coarse and fine transformations on cryo-ET datasets. This is because a macromolecule is of
fixed size with chirality under electron microscopy.

For GMM clustering, the learned features from the source image extracted from the feature layer were dimension
reduced by TSNE [43] to speed up the clustering process. We used full covariance for fitting the GMM. Both the TSNE
and GMM were implemented using the python package scikit-learn. For each training iteration, we matched the cluster
indices from the previous iteration by the Hungarian method [35] to stabilize the clustering branch training.

S3.2 Results details

In Table S1-S5, we report the alignment accuracy by different macromolecules on the simulated benchmark cryo-ET
datasets. Jim-Net achieved the overall best performance on four of the five macromolecules. We note that our model
Jim-Net converges faster than Gum-Net as Gum-Net trained the initial model for 500 epochs. This is because Jim-Net
learns to pair semantically similar images for more meaningful alignment training.

Method SNR 100 SNR 0.1 SNR 0.05 SNR 0.03 SNR 0.01

H-T align 0.06±0.02, 1.03±0.63 0.61±0.87, 2.64±3.55 1.62±1.14, 6.08±4.92 2.15±0.88, 8.49±4.72 2.38±0.56, 11.36±5.13
F&A align 0.08±0.13, 1.09±1.14 0.64±0.97, 2.96±3.99 1.68±1.16, 6.32±4.91 2.12±0.89, 8.39±4.79 2.35±0.59, 11.20±5.00
Gum-Net 0.27±0.54, 1.13±2.03 0.47±0.57, 1.94±2.26 0.68±0.64, 2.61±2.25 0.93±0.68, 3.62±2.32 1.38±0.78, 5.65±3.31

Jim-Net 0.16±0.47, 0.82±1.93 0.30±0.47, 1.42±2.01 0.51±0.58, 2.20±2.36 0.74±0.62, 3.13±2.63 1.50±0.76, 6.30±3.13

Table S1: Spliceosome (5LQW) subtomogram alignment accuracy on five datasets with SNR specified. In each cell, the
first term is the mean and standard deviation of the rotation error and the second term, the translation error. Best results
across all methods are highlighted.

Method SNR 100 SNR 0.1 SNR 0.05 SNR 0.03 SNR 0.01

H-T align 0.63±0.99, 3.15±4.27 1.67±1.06, 6.31±5.01 2.09±0.87, 7.65±4.56 2.22±0.74, 8.10±4.43 2.40±0.57, 10.93±4.97
F&A align 0.67±1.00, 3.22±4.24 1.71±1.08, 6.63±4.96 2.06±0.90, 7.76±4.67 2.23±0.74, 8.48±4.62 2.37±0.56, 10.94±4.98
Gum-Net 0.56±0.78, 2.22±3.05 0.75±0.77, 2.99±3.17 0.87±0.76, 3.49±3.31 1.05±0.71, 3.96±2.77 1.42±0.78, 5.66±3.53

Jim-Net 0.46±0.56, 1.98±2.46 0.78±0.71, 3.15±3.13 1.03±0.74, 4.14±3.58 1.18±0.73, 4.68±3.34 1.60±0.75, 6.55±3.43

Table S2: RNA polymerase-rifampicin complex (1I6V) subtomogram alignment accuracy.
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Method SNR 100 SNR 0.1 SNR 0.05 SNR 0.03 SNR 0.01

H-T align 0.09±0.10, 1.11±0.82 0.94±0.95, 3.75±4.03 1.74±1.02, 6.31±4.60 2.21±0.75, 8.69±4.56 2.37±0.55, 11.58±5.02
F&A align 0.16±0.34, 1.31±1.62 1.06±1.06, 4.31±4.41 1.85±0.99, 6.99±4.85 2.18±0.79, 8.69±4.55 2.39±0.58, 11.31±4.83
Gum-Net 0.30±0.55, 1.08±1.71 0.46±0.54, 1.80±1.90 0.71±0.63, 2.55±2.12 1.12±0.73, 3.93±2.45 1.45±0.76, 5.94±3.32

Jim-Net 0.22±0.47, 0.98±1.66 0.39±0.52, 1.67±2.01 0.64±0.60, 2.42±2.33 0.99±0.72, 3.71±2.89 1.58±0.76, 6.69±3.38

Table S3: RNA polymerase II elongation complex (6A5L) subtomogram alignment accuracy.

Method SNR 100 SNR 0.1 SNR 0.05 SNR 0.03 SNR 0.01

H-T align 0.06±0.02, 0.99±0.60 1.16±1.04, 4.43±4.21 2.13±0.84, 8.79±4.77 2.34±0.61, 10.59±4.98 2.36±0.59, 11.56±4.91
F&A align 0.05±0.03, 0.98±0.61 1.54±1.12, 6.39±5.19 2.17±0.80, 9.39±5.09 2.35±0.58, 10.81±4.93 2.40±0.55, 11.81±4.89
Gum-Net 0.43±0.87, 1.67±3.31 0.73±0.81, 2.70±2.87 1.19±0.84, 4.23±3.01 1.43±0.79, 5.67±2.96 1.76±0.75, 10.46±5.10

Jim-Net 0.16±0.50, 0.81±1.88 0.49±0.70, 1.99±2.43 1.09±0.86, 4.14±3.30 1.33±0.83, 5.19±3.28 1.65±0.78, 7.60±3.62

Table S4: Ribosome (5T2C) subtomogram alignment accuracy.

Method SNR 100 SNR 0.1 SNR 0.05 SNR 0.03 SNR 0.01

H-T align 0.65±0.95, 2.81±3.44 1.72±0.99, 6.65±4.55 2.08±0.88, 7.47±4.46 2.16±0.81, 8.42±4.47 2.38±0.58, 11.22±5.03
F&A align 0.69±0.97, 3.02±3.72 1.73±1.01, 6.69±4.71 1.97±0.94, 7.26±4.67 2.24±0.79, 8.59±4.69 2.39±0.56, 11.33±4.88
Gum-Net 0.48±0.67, 1.86±2.53 0.68±0.64, 2.61±2.46 0.89±0.72, 3.13±2.68 1.12±0.72, 4.25±2.73 1.46±0.78, 6.22±3.38

Jim-Net 0.45±0.52, 1.82±2.16 0.57±0.56, 2.37±2.20 0.72±0.64, 3.10±2.71 0.88±0.66, 3.90±2.94 1.55±0.78, 6.75±3.47

Table S5: Capped proteasome (5MPA) subtomogram alignment accuracy.

In Table S6-S10, we report the clustering accuracy by different macromolecules on the simulated benchmark cryo-ET
datasets. By comparing the per macromolecule clustering accuracy of different methods, we can see that the accuracy
of Jim-Net is relatively consistent among all macromolecules, whereas the baseline methods have the problem of the
degeneration of clusters. As discussed in the main document, Jim-Net has shared feature extractors for alignment and
clustering to learn robust features and therefore avoids the degeneration of clusters.

Method SNR 100 0.1 0.05 0.03 0.01

DeepCluster 86.7 40.8 30.0 26.6 28.4
PICA 100 100 55.1 24.7 33.5
Jim-Net (cluster) 99.8 97.8 87.5 67.8 44.6

Jim-Net 100 100 96.1 87.7 47.3

Table S6: Spliceosome (5LQW) subtomogram clustering accuracy on five datasets with SNR specified. Best results
across all methods are highlighted.

Method SNR 100 0.1 0.05 0.03 0.01

DeepCluster 53.9 24.2 21.2 18.7 16.5
PICA 100 99.9 40.4 39.7 23.6
Jim-Net (cluster) 99.8 78.1 37.2 29.9 25.3

Jim-Net 100 99.9 94.9 83.1 42.2

Table S7: RNA polymerase-rifampicin complex (1I6V) subtomogram clustering accuracy.
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Method SNR 100 0.1 0.05 0.03 0.01

DeepCluster 58.8 61.1 36.5 29.8 43.4
PICA 100 74.7 57.7 29.5 17.0
Jim-Net (cluster) 98.3 55.8 59.8 48.4 29.1

Jim-Net 100 98.8 94.8 73.8 36.0

Table S8: RNA polymerase II elongation complex (6A5L) subtomogram clustering accuracy.

Method SNR 100 0.1 0.05 0.03 0.01

DeepCluster 100 84.8 78.2 69.8 22.9
PICA 100 100 97.5 32.7 33.9
Jim-Net (cluster) 100 99.7 88.8 76.5 41.4

Jim-Net 100 100 99.4 98.5 58.3

Table S9: Ribosome (5T2C) subtomogram clustering accuracy.

Method SNR 100 0.1 0.05 0.03 0.01

DeepCluster 44.1 33.0 31.4 25.0 24.9
PICA 100 57.7 28.4 19.3 33.9
Jim-Net (cluster) 99.7 56.0 40.5 33.9 36.2

Jim-Net 100 99.7 95.1 84.4 56.6

Table S10: Capped proteasome (5MPA) subtomogram clustering accuracy.

In Table S11, we report the per-class PCK on each of the baseline methods. Among the weakly-supervised baseline
methods, SF-Net achieved the overall best performance. This is mainly because SF-Net requires stronger supervision in
the form of segmented foreground masks than other methods that only require image labels. We note that although our
unsupervised Jim-Net did not perform better than the methods that require weak supervision (foreground masks or
image labels), Jim-Net beat the only self-supervised method, A2-Net [60], overall 74.8% vs 70.8%. A2-Net is the most
directly comparable method to Jim-Net due to A2-Net being the only other method in the table that does not require
some form of annotated data.

Method aero bike bird boat bottle bus car cat chair cow d.table dog house moto person plant sheep sofa train tv all

A2-Net 83.2 82.8 83.8 44.4 57.8 81.3 89.4 86.1 40.1 91.7 21.4 73.2 33.8 76.3 74.3 63.3 100.0 45.5 45.3 60.0 70.8
WeakAlign 83.7 88.0 83.4 58.3 68.8 90.3 92.3 83.7 47.4 91.7 28.1 76.3 77.0 76.0 71.4 76.2 80.0 59.5 62.3 63.9 75.8
RTNs - - - - - - - - - - - - - - - - - - - - 75.9
NC-Net 86.8 86.7 86.7 55.6 82.8 88.6 93.8 87.1 54.3 87.5 43.2 82.0 64.1 79.2 71.1 71.0 60.0 54.2 75.0 82.8 78.9
SF-Net 89.5 89.2 83.1 73.6 85.9 92.6 95.0 83.7 65.6 93.8 53.6 81.3 71.6 80.6 72.3 71.0 100.0 69.3 80.0 79.5 81.9
DCC-Net 87.3 88.6 82.0 66.7 84.4 89.6 94.0 90.5 64.4 91.7 51.6 84.2 74.3 83.5 72.5 72.9 60.0 68.3 81.8 81.1 82.3

Jim-Net 73.6 76.3 59.2 82.6 64.4 74.4 73.3 84.8 71.9 88.4 74.9 77.3 69.8 71.0 81.1 51.2 100.0 68.0 82.5 75.1 74.8

Table S11: Per-class PCK on the PF-PASCAL benchmark. Baseline results were directly taken from corresponding
papers. RTNs did not report their per-class PCK.
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Figure S9: Sample clustering results of Jim-Net applied on PF-PASCAL. Each row corresponds to images that Jim-Net’s
cluster predicting branch assigned the same cluster label.
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Figure S10: Sample source to target alignments results of Jim-Net applied on PF-PASCAL. The images are arranged
into groups of four. The first image being the source image; the second image being the source image after an affine
transformation; the third image being the source image after an affine and spline transformation, and the last image
being the target image.
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S4 Additional materials

We put some contents originally in the main document due to page limits.

Related Work

S4.1 Optical flow/Image registration

Optical flow describes the motion pattern of objects in a visual scene by a dense or sparse vector field. [5, 14] provide
good surveys on traditional approaches. Flownet [11, 23] is the first end-to-end model for optical flow estimation
trained in a supervised fashion. Later, self-supervised [42, 75] and unsupervised [17, 66] optical flow models have
been proposed. Deformable image registration, a closely related concept, locally registers a set of source images to a
reference image, which is often applied to 3D medical images. Unsupervised deformable image registration models
have been successfully applied to CT scans [28, 31, 73], MRI [10, 74], and PET images [38].

As opposed to our image alignment objective of dealing with large transformation variations, both the 2D optical flow
and the 3D image registration are restricted to small local displacements between the source and target pairs.
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