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1. Loss Function
We use the Mean Square Error as the loss function for

pose branch while the Cross-Entropy loss is employed for
parsing branch. Therefore, the loss function of each branch
can be calculated by:

Lpos = LMSE(Ppos, Gpos) + LMSE(Ppos aux, Gpos aux)

Lpar = LCE(Ppar, Gpar) + LMSE(Pedg, Gedg)
(1)

where P denotes prediction and G denotes ground truth.
Since the two loss values are quite different, referring to [1],
we adopt the uncertainty loss to learn the weights for the
two branches.

L = e−σ1 · Lpos + σ1 + e−σ2 · Lpar + σ2 (2)

where σ1 and σ2 are learnable parameters that balance the
two tasks.

Since we use supervision in both two stages of forward,
in order to distinguish between the two losses, we denote
the losses as L1 and L2 respectively, so the total loss Ltotal

can be formulated as:

Ltotal = L1 + L2 (3)

2. Pruning Schemes
After searching, we combine two pruning schemes. First

of all, since the search of encoder-decoder and feature fu-
sion are both cell-based, we apply the pruning scheme in
DARTS [3]. However, the search for the multi-scale feature
interaction is not cell-based, and the connections are much
denser. More valuable connections should be retained to en-
sure the efficiency of the network after pruning. Therefore,
we design a new pruning scheme and its pseudo-code is in
Algorithm 1.

3. Architecture Detail
We design three search spaces, where encoder-decoder

search and high-level feature fusion search are cell-based,
and multi-scale feature interaction search is not. We show
the searched architecture in Fig. 1 and Fig. 2 respectively. In
Fig. 1, the Normal Cell 1, Reduction Cell 1, and Decoding
Cell 1 are used in the pose branch while the Normal Cell 2,

Algorithm 1 Pruning algorithm used in multi-scale feature
interaction search.
Input: The proportion of the operation o(·) in connection

from node j to node i, γo
i,j , j ≤ i;

Output: The remaining operations list, remaino;
1: Initialize s = 0, n = 0, remaino = [ ];
2: while s ≤ 0.7 and n ≤ 4 do
3: p = max(γo

i,j);
4: o

′
, i

′
, j

′
= p.index();

5: remaino.append(o
′

from j
′

to i
′
)

6: s = s+ p, n = n+ 1
7: end while
8: return remaino;

Reduction Cell 2, and Decoding Cell 2 are used in the pars-
ing branch. The encoder-decoder of the pose branch has
more dilated convolutions while the parsing branch prefers
to use standard convolution. Moreover, the cells in the pars-
ing branch are deeper. These all show there are differences
between the pose branch and the parsing branch which sug-
gests using different architecture to extract task-specific fea-
tures for the two tasks. For feature fusion, the parsing fea-
ture is fused with both the pose feature and the pose aux-
iliary feature, which means the parsing branch assists the
pose branch more. On the other hand, the pose feature is
fused with the edge feature in the parsing cell indicates pose
information may help enhance the boundary of each area.

Fig. 2 shows the connections of intermediate features be-
tween the two tasks. The pose branch absorbs more con-
nections from the parsing branch while the parsing branch
has fewer connections from another branch. This is consis-
tent with our experiments that parsing information helps all
types of key points while the promotion of human parsing
is concentrated in a few special classes.

4. Computational cost analysis

To demonstrate the high efficiency of the proposed NPP-
Net, we compare the computational cost with other state-of-
the-art methods. As shown in Tab. 1, our model achieves the
best performances on both tasks with a comparable compu-
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Figure 1. The searched cell architecture.
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Figure 2. The multi-scale feature interaction architecture.

tational cost which shows the great potential of NPPNet to
explore the interaction of the two branches. Note that the
pose estimation networks are usually smaller than human
parsing networks, and the MuLA [4] is mainly designed for
pose estimation and its performance on human parsing is
less satisfactory.

Table 1. Model size and computational cost on LIP dataset.
Method Param FLOPs mIOU PCK Task

CNIF [6] 83.6M 300.0G 57.74 - parsing only
HRNet [5] 60.6M 44.0G - 88.0 pose only
JPPNet [2] 89.1M 263.5G 51.37 82.7 both tasks
MuLA [4] 44.4M 43.4G 49.30 87.5 both tasks

NPPNet(ours) 73.4M 113.7G 58.56 88.9 both tasks
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