
Appendix
A. Type-II 2D-DCT Algorithm

The type-II 2D-DCT is given by a function D :
RN1×N2 → RN1×N2 that maps an image data {gx,y} to
its frequency representation D =

{
Dkx,ky

}
with Dkx,ky =
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, for ∀kx = 0, 1, ..., N1 − 1 and ∀ky = 0, 1, ..., N2 − 1,

where w(0) =
√
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4N and w(k) =

√
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2N for k > 0.

B. Visual Examples of Different Triggers

We provide the pair-to-pair comparisons of samples
patched with different triggers’ visual effects in the image
and frequency domain. Figure 7, 8 illustrate the compar-
ison of the attack cases over the GTSRB and the TSRD
dataset. We can see severe high-frequency artifacts sim-
ilar to the CIFAR-10 dataset results presented in Section
3.2. We also provide the pair-to-pair extended comparison
of both the image and frequency domain visual effects on
the evaluated CIFAR-10 and PubFig dataset in Figure 9, 10.
Those results over different datasets and different triggers
are provided here to further support the existence of persis-
tent high-frequency artifacts of previous backdoor attacks
in Section 3.2.

C. Visual Examples of the Random Puturbation
used in Developing the Detector

Figure 5: Visual examples of the random purturbations adopted in
developing the detector. The upper left sample is a clean example,
(a)-(e) are the perturbed results using different approaches.

Figure 5 presents the visual examples of the random per-
turbation results mentioned in Section 4.1. Figure 5 (a) is
the example of patching a white rectangle of random size
onto a random location of the image; Figure 5 (b) is the
result of patching a rectangle of random size and random
value to a random place. Those two random perturbations
simulate patching localized triggers as mentioned and an-
alyzed in Section 3.3. Figure 5 (c) is the visual result of

adding random Gaussian noise; the result of drawing a ran-
dom shadow of random shape is depicted in Figure 5 (d);
finally, 5 (e) shows the visual result of random blend.

Note that the random perturbations used in Section 4.1
as illustrated here are of different shape and values from the
tested triggers. We only use those random perturbations to
simulate the resulting high-frequency artifacts using the two
major patching methods, as analyzed in Section 3.3.

D. Linear Separability & Input Space

Figure 6: Detection Efficiency Using the Linear Model vs. Input
Width

As mentioned in Section 4.1, we look into the relation-
ship between the input space’s size and linear models’ ef-
ficiency. We test the F1-score and the linear models’ over-
all accuracy on detecting triggered samples using different-
input-spaced PubFig datasets. We test ten different values
ranging from 32 to 224. The relationship between the in-
put width and the detection efficiency is depicted in Fig-
ure 6. We can tell from the results that a larger-input-space
samples can more easily be used to conduct a linear sep-
aration of the benign samples and the triggered samples.
Meanwhile, the small-input-spaced samples are harder to
be separated with linear models. Intuitively, we conduct the
DCT of the whole image, thus acquiring a result of the same
size as the image domain. So the larger input-spaced sam-
ples have more pixels representing the high-frequency co-
efficients, thus better reflecting the high-frequency artifacts
when triggers are introduced. Based on the results shown in
Figure 6 and as claimed in Section 4.1, an input space larger
than 160 pixels can help linear models meet satisfying de-
tection results.

E. DNN Model Architechures and Ablation Study

Given the different scales of difficulties to separate the
DCT data in the frequency domain, we introduce a model
ablation study to acquire the most simplistic DNN architec-
ture that satisfies the detection performance to conduct the
experiments in Section 4.1.
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Figure 7: A pair-to-pair comparison of clean data and samples patching with different triggers on the GTSRB dataset. The frequency
results are averaged over 10000 randomly selected samples from the test set.

Figure 8: A pair-to-pair comparison of clean data and samples patching with different triggers on the TSRD database. The frequency
results are averaged over all 4170 samples.

Figure 9: A pair-to-pair comparison of clean data and samples patching with different triggers on the Cifar10 dataset. The frequency results
are averaged over 10000 randomly selected samples from the test set.

Figure 10: A pair-to-pair comparison of clean data and samples poisoned with different backdoor attacks on the PubFig dataset. The fre-
quency results are averaged over 1000 randomly selected samples from the test set and clipped with the range of (1.5,4.5) for visualization.
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Model #Parameters Train ACC
BadNets Troj-WM Troj-SQ Nature l2 inv l0 inv

ACC BDR ACC BDR ACC BDR ACC BDR ACC BDR ACC BDR

Linear 6,146 83.35 53.85 28.41 89.64 100 89.42 99.56 89.57 99.85 89.64 100 64.65 50.00
128-cell-hidden 393,602 88.23 54.80 21.89 93.85 99.99 93.44 99.16 93.71 99.71 93.84 99.96 55.61 23.50

3-layer CNN, kmax = 32 10,214 95.55 83.64 72.85 97.21 99.99 96.94 99.47 97.09 99.76 97.21 99.99 70.72 47.03
3-layer CNN, kmax = 64 31,862 97.15 84.26 71.72 98.40 99.99 98.21 99.60 98.26 99.72 98.38 99.95 55.71 14.61
3-layer CNN, kmax = 128 109,718 98.36 86.28 75.44 98.55 99.99 98.40 99.68 98.40 99.67 98.55 99.99 97.46 97.80
4-layer CNN, kmax = 128 245,014 98.44 87.63 78.18 98.52 99.97 98.36 99.65 98.39 99.70 98.53 99.99 95.25 93.43
5-layer CNN, kmax = 128 278,870 98.58 87.26 77.33 98.52 99.97 98.38 99.57 98.44 99.69 98.58 99.96 89.88 82.56
6-layer CNN, kmax = 128 292,002 98.64 94.10 90.50 98.85 99.99 98.76 99.82 98.66 99.61 98.85 99.99 98.86 100

Table 5: Model ablation study using the CIFAR-10 dataset. kmax represents the maximum value of the CNN kernels. We start the analysis
from the most straightforward fully-connected linear model. Hidden layers, convolutional layers, or kernel sizes are gradually added or
enlarged to test out the most simplistic model that can satisfy an outstanding detection efficiency. We present the training ACC, detection
ACC, and BDR for each attack (%); the boled results are larger than 90%, which we interpret as satisfying results.

On large-input-spaced samples, namely the PubFig
dataset, a linear model would already be able to achieve
an outstanding detection efficiency which is introduced in
Table 1, Section 4.2. Thus, no further ablation study is nec-
essary for the large-input-space. The details of the linear
model we adopted to conduct the detection task over the
PubFig dataset are shown in Table 6. We use Adam with a
learning rate of 0.01 as the optimizer for training this lin-
ear model. The binary cross-entropy is adopted as the loss
function for the task of linear separation. We train the linear
model with 50 epochs on the PubFig based dataset to attain
the results shown in Table 1, Section 4.2.

Given that the DCT results in our evaluation have the
same size as the original data’s input space, the DCT re-
sults over small-input-space have a weaker ability to depict
high-frequency artifacts compared to larger-input-space due
to the limited number of high-frequency coefficients. Thus,
as shown in Table 5, a similar fully connected linear model
cannot meet a satisfying detection efficiency over the fre-
quency domain using the same framework we proposed in
this paper. We then conduct a thorough model ablation
study by adding hidden layers or convolutional layers with
different kernel sizes to obtain a most simplistic model that
meets satisfying detection results over the evaluated attacks
as shown in Table 5. With more complex architecture and
parameters, the DNN can better detect the tested attacks.
Based on the ablation study, we found that only until the
model’s architecture consists of 6 convolutional layers with
kmax = 128 can it meet a satisfying and robust detection
efficiency against all evaluated attacks.

Input (224× 224× 3)
Flatten (150528)

Dense (2)

Table 6: The network architecture of our simple Linear detector
for large input space. We report the size of each layer.

The details of the simple 6-layer CNN detector for the
small-input-space are explained in Table 7. The above ex-

Input (32× 32× 3)
Conv2d 3× 3 (32× 32× 32)
Conv2d 3× 3 (32× 32× 32)

Max-Pooling 2× 2 (16× 16× 32)
Conv2d 3× 3 (16× 16× 64)
Conv2d 3× 3 (16× 16× 64)

Max-Pooling 2× 2 (8× 8× 64)
Conv2d 3× 3 (8× 8× 128)
Conv2d 3× 3 (8× 8× 128)

Max-Pooling 2× 2 (4× 4× 128)
Flatten (2048)

Dense (2)

Table 7: The network architecture of our simple CNN detector for
small-input-space. We report the size of each layer.

periments over the small-input-space are evaluated using
this model to demonstrate the efficiency of conducting the
detection of backdoor triggers in the frequency domain as
elaborated in Section 4.2. We use Adam with a learning rate
of 0.05 as the optimizer to train this model. Other settings
are the same as the experiment conducted in large-input-
space. The model took 150 epochs over the training set
created using CIFAR-10 to converge and attain the results
shown in Table 1, Section 4.2.

F. Target Model for Evaluating the Smooth Trigger

In Section 5.3, we evaluate the proposed smooth attack’s
attack efficiency on the CIFAR-10 and GTSRB dataset. As
suggested in Algorithm 1, conducting the proposed attack
requires a pre-trained model to generate the gradients for
solving the bilevel optimization problem. We explain the
details of the pre-trained model in Table 8. The model
was trained using Adam optimizer with a learning rate at
0.05 for 150 epochs to converge. The base-line ACC over
clean samples is 85.50% for the CIFAR-10 dataset. We also
trained a base-line model on the GTSRB dataset for gen-
erating the smooth trigger over the GTSRB dataset. The
GTSRB base-line model’s ACC is 97.45%.

12



Input (32× 32× 3)
Conv2d 3× 3 (32× 32× 32)
Conv2d 3× 3 (32× 32× 32)

Max-Pooling 2× 2 (16× 16× 32)
Conv2d 3× 3 (16× 16× 64)
Conv2d 3× 3 (16× 16× 64)

Max-Pooling 2× 2 (8× 8× 64)
Conv2d 3× 3 (8× 8× 128)
Conv2d 3× 3 (8× 8× 128)

Max-Pooling 2× 2 (4× 4× 128)
Flatten (2048)

Dense (10)

Table 8: The target model for evaluating the smooth trigger on
Cifar10 and GTSRB dataset. We report the size of each layer.

G. Smooth Trigger on the GTSRB Dataset

As mentioned in 5.3, we conduct the smooth attack over
the GTSRB dataset following the same pipeline as well.
Figure 11 depicts the generated smooth trigger’s visual re-
sults using the GTSRB dataset in the image and frequency
domain. The dominant label computed using the Algorithm
1 is 1 on the GTSRB pre-trained model. Similar to the at-
tack evaluation pipeline explained in Section 5.3, we con-
duct the backdoor attack with a poison rate of 0.1 over the
target model using the GTSRB dataset. The model trained
over the poisoned GTSRB dataset can maintain an ACC
over clean samples at 97.42%, which is almost the same as
the base-line model. Meanwhile, the ASR is 97.86% with-
out defense. We observed the model could achieve an ASR
greater than 90% even with one epoch of training. Mean-
while, the detection rate of the proposed detector in Section
4.1 can only achieve a BDR at 55.31% and an F1 score at
0.664 before considering this smooth attack. This detection
efficiency can only drop the attack success rate of this GT-
SRB smooth trigger to 40.97%.

Figure 11: Visual effects over image and frequency domian of the
smooth triggers. The trigger is multiplied by 5 for visualization.
The right bottom depicts the heatmap averaged over 10000 sam-
ples patched with the smooth trigger. Both the trigger itself and the
final images exhibit frequency spectra similar to natural images.

By incorporating this strongest smooth trigger found us-
ing Algorithm 1 into the development of the detector, we

can regain a high efficient detection efficiency of a BDR
at 85.53% and an F1 score of 0.8628 using the fine-tuning
pipeline proposed in Section 5.4. This fine-tuning does not
affect much over the other attack trigger’s detection effi-
ciency due to the limited scale as discussed in Section 5.4.
Using this upgraded detector on the poisoned model, we can
finally constrain the ASR from 97.86% to 13.27% by only
adopting the detector to reject samples with triggers during
the inference. In the case where we apply the detector to the
training phase , we can further drop the ASR to 13.03%.

Overall, we observe very similar results to the at-
tack conducted over the CIFAR-10 dataset. The GTSRB
datasets’ results further support the remarks mentioned in
the paper and emphasize the importance of the frequency
domain to the development of backdoor attacks and de-
fenses.
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