
Appendix

A. Compiler Optimization Details
We provide more details of our compiler optimizations

in this section. Different from prior DNN inference ac-
celeration frameworks [1, 2, 3, 8, 18, 17] that only only
support dense models or pattern-based pruned models, our
compiler optimizations are general, support both dense (un-
pruned) model and sparse (pruned) model with different
pruning schemes for fast inference on various mobile plat-
forms. The optimizations include 1) a layer fusion mech-
anism to fuse different layers together for the reduction of
memory consumption of intermediate results and number
of operators; 2) the supports for sparse models with differ-
ent pruning schemes; 3) an auto-tuning process to deter-
mine the best-suited configurations of parameters for dif-
ferent mobile CPUs/GPUs; 4) Domain Specific Language
(DSL) based code generation.

A.1. Layer Fusion Mechanism

To reduce the inference latency effectively for dense (un-
pruned) models, a layer fusion technique is incorporated in
our compiler optimization to fuse the computation operators
in the computation graph. With layer fusion, both the mem-
ory consumption of the intermediate results and the number
of operators can be reduced. The fusion candidates in a
model are identified based on two kinds of polynomial cal-
culation properties, i.e., compression laws and data access
patterns. The compression laws include associative prop-
erty, communicative property, and distributive property.

However, looking for the fusion candidates in such a
large space of all combinations of computation operations
is too expensive. Therefore, we introduce two constraints
to guide the looking up process: 1) only explore the op-
portunities that are specifically provided due to the above
properties, and 2) only consider enlarging the overall com-
putation for CPU/GPU utilization improvement and reduc-
ing the memory access for memory performance improve-
ment as the cost metrics in the fusion. Compared with prior
works on loop fusion [4, 5, 6], our method is more aggres-
sive without high exploration cost.

A.2. Supports for Different Pruning Schemes

Different from other DNN inference frameworks, our
framework also supports sparse model accelerations with
different pruning schemes including unstructured pruning,
coarse-grained structured pruning, pattern-based pruning,
and block-based pruning. Note that fine-grained unstruc-
tured pruning and coarse-grained structured pruning can be
viewed as two extreme cases of block-based pruning by
adopting 1×1 and the whole weight matrix size as the block
size, respectively. Thus, accelerating block-based pruned
model also indicates the inference speedup for unstructured

pruned and the traditional structured pruned models. For
the sparse (pruned) model, the framework first compacts
the model storage with a novel compression format called
Blocked Compressed Storage (BCS) format, as shown in
Figure A1, and then performs computation reordering to re-
duce the branches within each thread and eliminate the load
imbalance among threads.

BCS stores non-zero weights as Compressed Sparse
Row format (CSR) with an even better compression rate by
further compressing the index with a hierarchical structure.
Traditional CSR has to store each non-zero weight with an
explicit column index. Take block-based pruning as an ex-
ample, it preserves non-zero weights in identical columns
in each block, inducing many repeated column indices if
we use CSR. BCS eliminates this redundancy with a hierar-
chical compression on the column index only.

For block-based pruning, it partitions the weight matrix
of a whole layer into blocks with different pruning con-
figurations. Without any further optimization, it will en-
counter the well-known challenges for sparse matrix multi-
plications, i.e., heavy control-flows within each thread, load
imbalance among multiple threads, and irregular memory
access. To address this issue, a row reordering optimiza-
tion is also included to further improve the regularity of the
weight matrix. After this reordering, the continuous rows
with identical or similar numbers of non-zero weights are
processed by multi-threads simultaneously, thus eliminat-
ing thread divergence and achieving load balance.

Figure A1 shows a simplified example. Weights
array stores all non-zero weights. Compact column
array stores the compressed column index, e.g., [0, 3, 7]
denotes the column id of the first three weights [2, 3, 4].
Column stride array denotes the starting and end-
ing index of each row in compact column array, e.g., [0,
3] denotes that the column index for the first row starts
from index 0 and ends at index 2 in compact column ar-
ray. The same column indices may be used for multiple
rows. Occurrence array is used to specify the start-
ing and ending rows with the identical column index, e.g.,
[0, 2] means that row 0 and 1 share the same column index.
BCS also contains a row offset array to specify the
starting location of each row in weight array.

Usually, the weight distribution is not as regular as the
above simplified example, thus, a row reordering optimiza-
tion is also included to further improve the regularity of the
weight matrix. After this reordering, the continuous rows
with identical or similar numbers of non-zero weights are
processed by multi-threads simultaneously, thus eliminating
thread divergence and achieving load balance. Each thread
processes more than one rows, thus eliminating branches
and improving instruction-level parallelism. Moreover, a
similar optimization flow (i.e., model compaction and com-
putation reorder and other optimizations) is employed to



support all compiler optimizations for pattern-based prun-
ing as PatDNN [18].

A.3. Auto-Tuning for Different Mobile CPUs/GPUs

During DNN execution, there are many tuning param-
eters, e.g., matrix tiling sizes, loop unrolling factors, and
data placement on GPU memory, that influence the perfor-
mance. It is hard to determine the best-suited configuration
of these parameters manually. To alleviate this problem,
our compiler incorporates an auto-tuning approach for both
sparse (pruned) model and dense (unpruned) model. The
Genetic Algorithm is leveraged to explore the best-suited
configurations automatically. It starts parameter search after
an initialization with an arbitrary number of chromosomes
and explores the parallelism better. Acceleration codes for
different DNN models and different mobile CPUs/GPUs
can be generated efficiently and quickly through this auto-
tuning process, providing the foundation for fast end-to-end
inference. The auto-tuning optimizations together with the
layer-fusion optimizations make our framework outperform
other acceleration frameworks.

A.4. DSL based Code Generation

In deep learning, a computational graph of a DNN model
can be represented by a directed acyclic graph (DAG). Each
node in this graph corresponds to an operator. We propose
a high-level Domain Specific Language (DSL) to specify
such kind of operators. Each operator in a computational
graph also with a layerwise Intermediate Representation
(IR) which contains BCS pruning information. The input
and output are different tensors in terms of different shapes.
This DSL also provides a Tensor function for users to cre-
ate matrices (or tensors).

In this way, DSL is equivalent to a computational graph
(that is, DSL is another type of high-level functions used to
simulate the data flow of the DNN model), and they can be
easily converted to each other. DSL provides users with the
flexibility to use existing DNNs or create new DNNs, im-
proving the productivity of DNN programming. If the DNN
already exists, we will convert it into an optimized calcula-
tion graph and convert this graph into a DSL. Otherwise,
the user writes the model code in the DSL, converts it back
to a calculation graph, performs advanced optimization, and
regenerates the optimized DSL code.

Finally, our compiler translates the DSL into low-level
C++ code for mobile CPU and OpenCL code for mobile
GPU, and optimizes the low-level code through a set of op-
timizations enabled by BCS pruning. The generated code
can be then deployed on the mobile device.

B. Reweighted `1 Algorithm
Prior weight pruning algorithms such as using the group

Lasso regularization [23, 12, 16] or Alternating Direction
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Figure A1. Matrix Reorder and Blocked Compressed Storage
(BCS) for weights.

Methods of Multipliers (ADMM) [25, 19, 14] either suffer
from potential accuracy loss or require manually compres-
sion rate tuning. To overcome the limitations, we leverage
reweighted group Lasso [7] method to discover the spar-
sity with automatically determined pruning ratio. The ba-
sic idea is to systematically and dynamically reweight the
penalties. More specifically, the reweighted method reduces
the penalties on weights with larger magnitudes, which are
likely to be more critical weights, and increases the penal-
ties on weights with smaller magnitudes.

We formulate the general reweighted pruning problem as
below

minimize
W

f
(
W ;D

)
+ λ

L∑
l=1

R(αl,W l), (A1)

where λ is the hyperparameter to adjust the relative im-
portance between accuracy and sparsity. D stands for the
dataset. W l denotes the weight matrix for the l-th layer
and W := {W l}Ll=1. Let αl represent the collection of
penalty values that applied on the l-th layer weights. Note
that each element in αl is positive.

The regularization term R(αl,W l) denotes the penal-
ties on the weights for the l-th layer. The method can
be applied to models with different pruning schemes for
each layer. For block-based pruning, each W l is divided
into J blocks with the same size pl × ql, namely, W l =
[W l

1,W
l
2, ...,W

l
J ], and the regularization term for block-

based column pruning is defined as
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where [W l
j ]:,n is the n-th column ofW l

j and αljn is updated
by 1
‖[W l

j ]:,n‖2F+ε
to help increase the degree of sparsity. ε is

a small value to avoid zero denominator. From the equation
we can see that small ‖[W l

j ]:,n‖2F leads to a large penalty
αljn, thus is more likely to be pruned.

Similarly, the regularization term for block-based row
pruning is defined as

R(αl,W l) =

J∑
j=1

pl∑
m=1

∥∥αl
jm · [W l

j ]m,:

∥∥2
F
, (A3)



where [W l
j ]m,: represents the m-th row of W l

j and αljm
is updated by 1

‖[W l
j ]m,:‖2F+ε

. For coarse-grained structured
pruning, it can be viewed as the special case of block-based
pruning by setting J = 1 and pl × ql as the original weight
matrix size of layer l in equation (A2) and equation (A3).

As for pattern-based pruning, as it acts on the kernel lev-
els and suits tensor-based computation better, we formulate
it with tensor representations. We represent the weight ten-
sor for the l-th layer asW l ∈ RN l×Cl×Kl

h×K
l
w , where N l,

Cl, Kl
h, Kl

w represent the number of filters, the number of
channels, kernel height and kernel width for the l-th layer,
respectively. We first apply a kernel pattern from a pre-
defined kernel pattern library to each 3 × 3 kernel in the
model, resulting in weight tensor W ′l for l = 1, · · · , L.
We further apply connectivity pruning and the regulariza-
tion term is defined as

R(αl,W ′l) =

Nl∑
n=1

Cl∑
m=1

∥∥αl
nm · [W ′l]n,m,:,:

∥∥2
F
, (A4)

where [W ′l]n,m,:,: stands for the kernel that connects the
m-th input channel with the n-th output channel, and αlnm
is updated by 1

‖[W′l]n,m,:,:‖2F+ε
.

In each iteration of the prune ratio determination, we
solve problem (A1) with certain epochs of training. Then
with the obtainedW , we can update α. Thus in the next it-
eration, we again solve problem (A1) with updatedα. After
iterations, we can obtain the sparse weights without human
intervention. We see that the reweighted method only re-
quires the hyperparameter λ and the soft constraints formu-
lation allows the automatic determination of the prune ratio
for each layer.

C. Comparison with State-of-the-Art for ×3
Scaling Task

Besides the results for ×2 and ×4 upscaling task, we
further compare our models on ×3 upscaling with state-
of-the-art efficient SR models. As shown in Table A1, for
the ×3 upscaling task, our model obtained with a target la-
tency t = 150ms reaches higher PSNR/SSIM than SRCNN
and FSRCNN with comparable or even fewer MACs. With
t = 290ms, our model provides better PSNR/SSIM com-
pared with CARN-M with 3.7× MACs reduction. Com-
pared with ESRN-V, EDSR, and WDSR, competitive im-
age quality in terms of PSNR/SSIM can be obtained by our
model with much fewer MACs. By setting t = 50ms, our
model reaches real-time inference while keeping fairly good
PSNR/SSIM.

D. Visual Comparison with Other SR methods
In this section, we include more visual comparisons with

other SR models on ×4 upscaling task, as shown in Figure
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Figure A2. Visual comparison with other SR models on ×4 scale.
Model parameters and MACs are listed under model name.

A2. The low-resolution images are img 091 and img 013
from Urban100. As observed, high-resolution images gen-
erated by our models demonstrate undetectable visual dif-
ference compared with the baseline WDSR while greatly
saving the parameters and MACs.

E. Ablation Study

We compare our method with other SR models in terms
of FPS and PSNR. For a fair comparison, we implement our
derived models and other baselines with MNN (not support
sparse models for further inference accelerations) on mobile
CPU as the baselines. We want to promote reproducibility
and evaluate speedup using the same framework to show the
generalization of our searched results. Note that we modify
the sparse models derived by our method by filling each
pruned weight with a zero value as MNN does not support
sparse models for further speedups. In this way, the models
being dealt with MNN are dense models with a bunch of
zero-value weights.

As shown in Figure A3, compared with CARN-M [13]
and FSRCNN [10], our method with large t can result in
higher FPS and PSNR. The derived models with smaller
t have slight PSNR degradation with significant FPS im-
provements. Note that our model with compiler optimiza-
tion can satisfy the real-time requirement (such as t =
50ms). And our derived model implemented with MNN
still maintain fairly good results (such as 10.8FPS for the
t = 50ms searched result on the ×3 upscaling task) as it
demonstrated in Figure A3.



Scale Model
Params

(K)
Multi-Adds

(G)
Set5

(PSNR/SSIM)
Set14

(PSNR/SSIM)
B100

(PSNR/SSIM)
Urban100

(PSNR/SSIM)

× 3

SRCNN [9] 57 52.7 32.75/0.9090 29.28/0.8209 28.41/0.7863 26.24/0.7989
FSRCNN [10] 12 5.0 33.16/0.9140 29.43/0.8242 28.53/0.7910 26.43/0.8080
CARN-M [13] 412 46.1 33.99/0.9236 30.08/0.8367 28.91/0.8000 27.55/0.8385
ESRN-V [20] 324 36.2 34.23/0.9262 30.27/0.8400 29.03/0.8039 27.95/0.8481
EDSR [15] 1518 160.8 34.37/0.9270 30.28/0.8418 29.09/0.8052 28.15/0.8527
WDSR [24] 1203 122.5 34.48/0.9279 30.39/0.8434 29.16/0.8067 28.38/0.8567
Ours (t = 290ms) 122 12.5 34.13/0.9252 30.12/0.8372 28.98/0.8015 27.71/0.8420
Ours (t = 150ms) 51 5.2 33.85/0.9225 29.95/0.8347 28.86/0.7984 27.35/0.8340
Ours (t = 50ms,real-time) 16 1.5 33.29/0.9160 29.57/0.8261 28.61/0.7929 26.44/0.8106

Table A1. Comparison of searched results with state-of-the-art efficient SR models for the ×3 upscaling task.
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Figure A3. FPS v.s. PSNR for different SR methods implemented
with MNN on mobile CPU evaluated on B100.

F. Fast Evaluation for Architecture and Prun-
ing Search

Though Bayesian Optimization (BO) is leveraged to re-
duce the evaluation cost, it is still time-consuming to get the
precise image quality of each candidate g in the selected B
candidates as it requires the complex pruning and the full
retraining process. Conducting the architecture and pruning
search process with such an evaluation method will take a
huge amount of time and computations. To reduce the over-
all search time, we utilize several strategies to accelerate the
image quality evaluation process.

First, instead of using a complex pruning algorithm such
as iterative pruning [11] and regularization-based methods
[19, 25], we conduct a magnitude-based one-shot pruning
by removing weights based on the L2-norm of the selected
structural sparsity and the pruning ratio according to the la-
tency model. Though it might lead to a more severe ac-
curacy degradation compared with other pruning methods,
one-shot pruning can still distinguish the different perfor-
mance among different pruning schemes. Moreover, it is
the relative accuracy performance, not the precise accuracy
of different pruning schemes, that the search process cares
for. Therefore, adopting a magnitude-based one-shot prun-
ing for fast evaluation if suitable.

Metric Method Params Multi-Adds Set5 Set14 B100 Urban100
FSRCNN 12K 4.6G 0.2187 0.3032 0.3354 0.3414
CARN-M 412K 32.5G 0.1810 0.2733 0.3128 0.2793

LPIPS WDSR 1203K 69.3G 0.1764 0.2640 0.3047 0.2535
Ours 125K 7.1G 0.1793 0.2725 0.3117 0.2742
Ours 12K 0.7G 0.1954 0.2882 0.3218 0.3135

Table A2. Comparison on ×4 upscaling tasks using LPIPS. Lower
is better for LPIPS. Multi-Adds is reported for an input 320×180
image patch. Red/blue text: best/second-best LPIPS result.

Second, as the supernet is well-trained with each can-
didate dense net a ∈ A is optimized simultaneously, we
leverage an early stopping mechanism in the retraining
phase by only retraining for several epochs. The par-
tially regained accuracy can predict the final model accu-
racy and be used to compare the performance among differ-
ent schemes [26, 21]. With the fast pruning and retraining
of each selected candidate g, we could greatly accelerate
the image quality evaluation, thus significantly reducing the
search cost.

G. LPIPS Performance
We further evaluate the perceptual quality of our method

in terms of LPIPS. The results are shown in Table A2. Ac-
cording to the results, our method needs much less resource
with second-best LPIPS.

H. Comparison with APQ
APQ [22] jointly searches network architecture, pruning,

and quantization for efficient DNN deployment. The differ-
ences between our method and APQ are summarized as be-
low: (i) We have different search objectives. While APQ fo-
cuses on classification accuracy, we try to achieve real-time
(RT) Super Resolution (SR) on mobile with specific RT re-
quirements, which is more challenging due to huge compu-
tations for high resolutions. (ii) We have different search
strategies. We decouple pruning ratio search from architec-
ture and pruning scheme search to reduce search complex-
ity, thus accelerating the search process, while APQ unifies
NAS, pruning and quantization as joint optimization. (iii)
We have a larger pruning scheme search space. We can
choose channel pruning, pattern pruning, or block pruning
for each layer with higher flexibility for both high accuracy



and speed, while APQ only supports coarse-grained channel
pruning with potential accuracy degradation when pruning
ratio is high. (iv) We adopt additional methods (Bayesian
optimization with neural predictors) to reduce search cost
with higher efficiency. (v) The connection with hardware
is different. We have a specific target hardware device
(mobile phones) with detailed compiler optimization (CO),
while APQ uses an ASIC design and optimizes model for
it.
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