
DeepPanoContext: Panoramic 3D Scene Understanding with
Holistic Scene Context Graph and Relation-based Optimization

Supplementary Material

Cheng Zhang1 Zhaopeng Cui2* Cai Chen1 Shuaicheng Liu1* Bing Zeng1 Hujun Bao2 Yinda Zhang3*

1 University of Electronic Science and Technology of China
2 State Key Lab of CAD & CG, Zhejiang University 3 Google

In this supplementary material, we provide synthetic
dataset examples, network architecture details, and imple-
mentation details. We also provide visualization of relation
optimization, 3D detection performance on all categories,
more qualitative results, more comparison on Structured3D,
and discussion of failure cases.

A. Dataset Examples
Our synthetic dataset provides various ground truth

along with the RGB panorama images, including 2D object
bounding boxes/BFoVs, watertight scene/object meshes,
oriented 3D object bounding boxes, and 3D room layout.
Our synthetic panorama scene understanding dataset also
provides depth maps and semantic/instance segmentation
images, which can be used by others. Some examples of
our panorama dataset are shown in Fig. C. We also show
object crops collected from the panorama images and extra
object-centric images rendered from object models used for
single image object reconstruction in Fig. D. The data gen-
eration code is built upon iGibson [4] and fully customized
for panorama images.

B. Implementation Details
Dealing with Panorama Image As mentioned in the main
paper, to deal with the continuity of panorama images, we
parameterize the 2D bounding box with Bounding FoV
(BFoV) [2, 5], and extend the panorama boundary before
running 2D detector. Moreover, we change the object ori-
entation θ to be the yaw angle of the object in the cropped
perspective image coordinate. Compared to directly esti-
mating the orientation in the world frame as in Im3D [6] and
Total3D [3], our representation is more intuitive because it
explicitly codes the transformation from the camera coordi-
nates to the world coordinates. When calculating bounding
box projection term ebp in relation optimization, we rotate
the camera to each detected bounding box center then do
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RGCN Output Loss Weight
Symbol Description Symbol Value

rr Object-object/wall relative rotation relation λrr 10
oa Object-object/wall attachment relation λoa 10
fa Object-floor attachment relation λfa 10
ca Object-ceiling attachment relation λca 10
rd Object-object relative distance relation λrd 10
δ 3D bounding box center offset λ′

δ 10
d 3D bounding box distance λ′

d 10
s 3D bounding box size λ′

s 10
θ Object orientation λ′

θ 10

Table A: RGCN outputs and loss weights of LRGCN and L.

Term Weight
Symbol Description Symbol Value

oc Object-object collision λoc 1
wc Object-wall collision λwc 1
fc Object-floor collision λfc 1
cc Object-ceiling collision λcc 1
rr Object-object/wall relative rotation relation λrr 0.1
oa Object-object/wall attachment relation λoa 1
fa Object-floor attachment relation λfa 1
ca Object-ceiling attachment relation λca 1
rd Object-object relative distance relation λrd 0.01
δ 3D bounding box center offset λrd 0.0001
d 3D bounding box distance λd 0.01
s 3D bounding box size λs 1
θ Object orientation λθ 0.001
bp 3D bounding box projection λbp 10

Table B: Terms in relation optimization and the weight of
each term.

the projection of 3D bounding boxes, which avoids cross-
border situations.
RGCN relation branch We design a relation branch for our
RGCN to facilitate the relation estimation from the 512-dim
representation vectors of object/relation nodes. We design
the relation branch of RGCN as two-layer MLPs for each
relation, which consist of a 256-dim FC layer, followed by
a ReLU and Dropout layer with a drop factor of 0.5, and an
output layer. The output layer is 1-dim for binary relations
( i.e., object-object/wall/floor/ceiling contact, inside or out-
side room, closer and farther to camera center between a
pair of objects), and 8-dim for multi-class relations (i.e., the
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Figure A: Visualization of our proposed relation opti-
mization. A PDF reader like Adobe Acrobat Reader /
KDE Okular might be needed for displaying animated se-
quences. We also include more animation as a video along
with this pdf file. The ground truth object bounding boxes
are visualized with gray color for reference, while the cur-
rent states are colorized. The attachment relations among
objects, walls, floor, and ceiling are indicated by thick white
lines, while the collisions are in red.

angular difference between object and object/wall).

Hyper parameters For the weights of LODN , we refer to
Total3D [3] for detailed settings. For the loss weights of
LRGCN and the joint loss L, we show the description of
each output and its corresponding loss weight in Tab. A.
For relation optimization, we weight each term by its con-
fidence and importance. For example, 2D observations
should be more confident, and collision terms should be
weighted more if we consider physically plausible object
poses important. We show the description of each term and
its corresponding weight in Tab. B. In optimization, we use
a gradient descend optimizer and set the learning rate to 1,
steps to 100, and momentum to 0.9.

Training All the borrowed networks (i.e., Mask-RCNN,
HorizonNet, ODN, LIEN, LDIF) are fine-tuned individu-
ally on our proposed dataset. Specifically, Mask-RCNN is
fine-tuned from the weights pre-trained on COCO dataset,
with batch size of 8 and learning rate of 2e-3 for 1e5 steps.
HorizonNet is fine-tuned from the weights pre-trained on
Structured3D dataset, with batch size of 6 and learning rate
of 1e-4 for 50 epochs. ODN is fine-tuned from the weights
pre-trained on SUN RGB-D, with batch size of 6 and learn-
ing rate of 1e-4 for 15 epochs. LIEN and LDIF are fine-
tuned from the weights pre-trained on Pix3D, with batch
size of 24 and learning rate of 2e-4 for 100 epochs. To make
a fair comparison, all variation of Total3D [3] and Im3D
[6] including the perspective and panorama version are also
fine-tuned on our proposed dataset following the above pro-
cess. For Total3D-Pers and Im3D-Pers, the ODN and Scene
Graph Convolutional Network (SGCN) are fine-tuned and
tested with detection results obtained from split views. In
addition, MGNet used by Total3D is fine-tuned from the

Metric Total3D Im3D
w/o. RO w. RO w/o. RO w. RO

mAP (57 categories, ↑) 25.79 32.46 27.25 33.54
avg col (↓) 3.41 0.89 2.62 0.90

Table C: The improvement of RO on different methods. The
improvement of 3D object detection is evaluated with mAP
of all 57 categories and physical violation is evaluated with
average collision times per scene.

Methods
(Pano) Initial Estimation

Object
Reconstruction GCN RO Total

Total3D 0.66 0.23 (MGN) - - 0.89
Im3D (Mask R-CNN, 5.92 0.03 (Scene GCN) - 6.62
Ours HorizonNet, ODN) (LIEN+LDIF) 0.06 (Relation-based GCN) 4.74 11.38

Table D: Efficiency comparison. We use average time per
scene in seconds to compare efficiency of different methods
and modules (tested on a single GTX 1080Ti).

weights pre-trained on Pix3D, with batch size of 16 and
learning rate of 1e-4 for 100 epochs. To train our proposed
RGCN, we generate the attachment relation ground truth
by doing collision detection with a tolerance of 0.1m (i.e.,
before collision detection, we expand the bounding box by
0.05m) on the ground-truth 3D object bounding boxes and
the estimated layout walls. The other relations are calcu-
lated according to their definition directly. We first train our
RGCN with only the pose refinement branch, with batch
size of 16 and learning rate of 1e-4 for 35 epochs. Then we
fine-tune it with relation estimation branch for 20 epochs
using the same settings. Finally, we do an end-to-end train-
ing of ODN and RGCN with RO, with batch size of 1 and
learning rate of 1e-5 for 10 epochs.

C. Visualization of Relation Optimization

To visualize the process of our proposed relation opti-
mization, we present an animation in Fig. A. For demon-
stration, we add random noises to the ground truth object
poses as the initial state, which simulates the inaccuracy of
the initial pose estimation. We then use the relation gen-
erated from the ground truth poses to optimize the current
poses (colorized) using our proposed method. We observe
that as the optimization goes on, the position and orienta-
tion of the objects become closer to the ground truth, while
the collisions are gradually resolved.

D. 3D Detection mAP on all 57 categories

In Tab. 1 of the main paper, we show 3D object detection
results for 11 common categories. Here we show a com-
plete quantitative evaluation on all 57 categories in Tab. G.
Same as the conclusion made in the main paper, our method
outperforms the SoTA with a large margin.
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Method (Pano) door picture table sofa chair window bed bottom cabinet chest
Total3D 28.65 0.06 38.83 31.64 23.71 4.78 74.09 37.08 62.07
Im3D 37.59 0.14 49.47 37.24 29.34 6.35 77.66 45.18 70.03
Ours (w/o. RO) 54.74 0.69 48.39 36.05 29.85 13.49 81.13 48.33 72.08
Ours (Full) 57.73 1.24 49.10 37.02 29.95 12.28 81.15 48.76 74.26
Method (Pano) sink fridge bathtub shelf mirror toilet counter standing tv mean
Total3D 28.24 68.82 69.36 10.36 0.04 19.88 19.17 2.12 30.52
Im3D 28.57 71.39 73.93 9.78 0.92 15.04 19.17 2.52 33.78
Ours (w/o. RO) 27.43 73.35 73.93 15.84 1.47 32.87 19.17 9.61 37.55
Ours (Full) 27.93 73.35 73.93 15.76 3.19 65.54 19.17 13.20 40.21

Table E: 3D object detection comparison on Structured3D. We evaluate on the 17 iGibson categories mapped from 20 Struc-
tured3D categories and use mean average precision (mAP) with the threshold of 3D bounding box IoU set at 0.15 as the
evaluation metric.

(a) Input (b) 3D Detection (c) Reconstruction

Figure B: Qualitative results of our model on Structured3D.

E. More Qualitative Comparison on 3D Detec-
tion and Scene Reconstruction

In Sec. 4.1 of the paper, we show qualitative compar-
isons on 3D detection and reconstruction. Here we provide
more results in Fig. E. Compared to the SoTA methods
[3, 6], our method produces significantly better 3D detec-
tion and reconstruction results. From the 3D detection and
reconstruction results in panorama view, we observe that
our method generates more accurate projections of recon-
structed objects (e.g., the mirror of (a), the sofa of (b) and
(d), the door of (c)). From the 3D detection results in Bird’s
Eye View, we can see that our method generates more rea-
sonable and physically plausible object poses (e.g., (c), (e)
have less object-wall collision and better rotation relations
with walls).

F. Would RO Improve Other Methods?

In order to further evaluate the proposed relation opti-
mization, we apply our RO on Total3D and Im3D using our
predicted relation and their final results, and show the re-
sults in Tab. C. We can see that both methods still signifi-
cantly benefit from the RO, which demonstrates that our RO
is effective and robust to different initial estimates.

Parameter Value Parameter Value
λrd 0.0040 λoc 0.0157
λd 0.1404 λwc 0.2625
λs 6.0502 λfc 0.3182
λθ 0.0003 λcc 0.2036
λbp 0.2895 learning rate 0.0124

Table F: Auto-searched hyperparameters used on Struc-
tured3D, including weights of relation optimization terms
and learning rate of relation optimization.

G. Run-time Efficiency

The efficiency comparison is shown in Tab. D. It is worth
mentioning that implicit representation LDIF and RO are all
implemented with PyTorch, and can be further optimized,
e.g., using CUDA, to improve the efficiency.

H. Experiment on Structured3D

Since Structured3D provides the ground truth of object
pose and layout, we can train our model up to RGCN. Due
to the lack of mesh ground truth, we load the object recon-
struction model with weights trained on iGibson. Further-
more, since the object reconstruction model requires cat-
egory label as input, we map the object categories from
Structured3D to iGibson. We found overlapping categories
between two datasets, which ends up with 20 structure3D
categories mapped to 17 iGibson categories. Specifically,
“cabinet”, “bookshelf”, “desk”, “shelves”, “dresser”, “floor
mat”, “television”, “box”, “nightstand” in Structure3D are
mapped to “bottom cabinet”, “shelf”, “table”, “shelf”, “bot-
tom cabinet”, “carpet”, “standing tv”, “chest”, “chest” in
iGibson, and others are mapped with the same category
name. It is also worth mentioning that the bounding box GT
of objects in Structured3D is not accurate or physical plausi-
ble, which makes it difficult to produce rich relation GT and
to better refine the object poses with observation and colli-
sion terms. So the weights of relation optimization terms
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need to be tuned to match the condition. Specifically, we
fix the weights of relation terms and auto-search the learn-
ing rate of gradient descend optimizer and other weights
of relation optimization terms around the original settings
used on iGibson. In summary, we train object detection on
overlapping categories and set weights of RO terms with
auto-search [1]. The auto-searched weights are shown in
Tab. F. Qualitative results are shown in Fig. B. We can
see that our method performs well with good layout, pose
and shape estimation although there is no ground truth for
shapes. We compare 3D object detection against existing
methods quantitatively in Tab. E. The results show that our
method still outperforms SoTA methods significantly, and
RO plays a big role in improving the mAP.

I. Failure Cases
We show failure cases in Fig. F. One scenario that our

pipeline fails is when heavy occlusion happens (i.e., one of
the doors on the right in (d), the second door on the left in
(a)), which tends to shrink the size of the object in order to
favor the projection term with the partial 2D observation. A
possible solution might be to understand the occlusion and
learn the mask behind occluder. Another scenario is when
the 2D detector has multiple detection results on a single
object (i.e., the wardrobe on the right in (a), the sofa on the
right in (b), the drawer on the left in (c)), which lead to two
overlapped object reconstructions in the same place but not
sufficient to trigger non-maximum suppression. This might
be solved by refining the category prediction of the 2D de-
tector in the RGCN, which will presumably fix detected ob-
ject categories with mistakes (or set reduplicated object to
void) with a better understanding of the 3D scene context.
The last scenario is when HorizonNet fails to generate lay-
outs for rooms that don’t satisfy the Manhattan-world as-
sumption (i.e., the wall on the left side in (e)), our pipeline
will fail to optimize the object pose based on the wrong wall
orientation. Also when object-wall rotation relation is esti-
mated badly (i.e., the window in (b)), the orientation cannot
be optimized properly.
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Figure C: Samples of our proposed panorama 3D scene understanding dataset.
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Figure D: Samples of dataset used for single image object reconstruction.
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Figure E: More Qualitative comparison on 3D object detection and scene reconstruction.
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Method chair sofa table fridge sink door
floor
lamp

bottom
cabinet

top
cabinet

sofa
chair dryer

Total3D-Pers 13.71 68.06 30.55 36.02 69.84 11.88 12.57 35.56 19.19 64.29 41.36
Total3D-Pano 20.84 69.65 31.79 43.13 68.42 10.27 16.42 34.42 20.83 62.38 33.78
Im3D-Pers 30.23 75.23 44.16 52.56 76.46 14.91 9.99 45.51 23.37 80.11 53.28
Im3D-Pano 33.08 72.15 37.43 70.45 75.20 11.58 6.06 43.28 18.99 78.46 41.02
Ours (w/o. RO) 33.57 75.18 38.65 71.97 80.66 19.94 18.29 50.67 29.05 79.42 60.07
Ours (Full) 27.78 73.96 46.85 74.22 75.29 21.43 20.69 52.03 50.39 77.09 59.91

Method window carpet picture oven
bottom
cabinet
no top

counter
dish

washer shelf
coffee
table mirror toilet

Total3D-Pers 2.92 0.05 0.01 31.33 34.40 0.78 43.54 10.93 39.72 0.11 90.00
Total3D-Pano 3.07 0.05 0.02 29.81 32.48 1.11 48.39 9.57 49.52 0.64 90.00
Im3D-Pers 3.52 0.12 0.00 31.28 47.45 2.60 51.47 15.01 59.02 0.81 90.00
Im3D-Pano 3.42 0.01 0.01 29.06 44.79 1.34 43.80 15.41 56.82 0.16 90.00
Ours (w/o. RO) 6.94 0.12 0.03 32.52 46.42 1.83 59.78 15.58 61.17 2.42 90.00
Ours (Full) 9.56 0.65 0.21 34.50 44.17 1.25 63.19 22.65 50.69 6.12 90.00

Method
wall

mounted
tv

loud
speaker

console
table fence chest

standing
tv

table
lamp

speaker
system bathtub plant treadmill

Total3D-Pers 0.52 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.77 11.48 0.00
Total3D-Pano 0.24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.77 3.10 0.00
Im3D-Pers 0.03 0.00 0.00 0.00 0.00 0.00 6.06 0.00 10.26 10.34 0.00
Im3D-Pano 0.08 0.00 0.00 0.00 0.00 0.00 3.17 0.00 10.26 12.69 0.00
Ours (w/o. RO) 0.24 0.00 0.00 0.00 0.00 0.00 10.53 0.00 10.26 8.35 0.00
Ours (Full) 0.14 0.00 0.00 0.00 0.00 0.00 2.79 0.00 41.02 16.46 0.00

Method washer stool
trash
can stove bed

office
chair shower

towel
rack piano mAP

Total3D-Pers 35.06 29.09 24.45 44.44 71.87 0.00 100.00 25.00 55.56 25.11
Total3D-Pano 32.21 29.09 25.84 44.44 73.22 0.00 72.73 50.00 75.00 25.79
Im3D-Pers 36.50 29.09 22.02 44.44 73.22 0.00 81.82 50.00 83.33 29.86
Im3D-Pano 36.50 29.09 39.13 44.44 73.22 0.00 80.17 0.00 43.33 27.25
Ours (w/o. RO) 36.50 29.09 31.15 44.44 71.57 0.00 81.82 0.00 100.00 30.91
Ours (Full) 36.50 29.09 66.23 44.44 71.57 0.00 100.00 0.00 100.00 33.59

Table G: 3D object detection comparison on full 57 categories. Some categories existing in training scenes do not exist in
testing scenes, or vice versa, which is the main reason for some of the 0 mAP cases.
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Figure F: Failure cases.
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