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1 Implementation Details
In this section, we mainly introduce the technical details of the HIU-DMTL frame-
work.

1.1 Backbone
Stem Module. The stem module consists of two 7× 7 convolutional layers with stride
2, and the channels are set to 64 and 128, respectively.

Encoder. We employ the main-body of ResNet-50 [5] to implement the encoder.
Specifically, the beginning conv1 together with the prediction head are removed, while
the remaining conv2 x, conv3 x, conv4 x, and conv5 x are adopted to build the en-
coder module, and the number of repetitions are 3,4,5, and 6, respectively.

Heat-Map Decoder. The heat-map decoder estimates the feature maps hms ft ∈
R256×64×64 to capture semantic features to encode the 2D hand pose. Similar with
[10], the decoder also estimates the hms ∈ R21×128×128, based on the hms ft, to
represent the locations of 21 hand key points, and the hms is used for intermediate-
supervision. Skip connections between the encoder and the heat-map decoder are also
adopted to favor the learning procedure.

Mask Decoder. The target of the mask decoder is to estimate the feature maps
mask ft ∈ R256×64×64 to capture semantic features that encode the hand segmentation
mask. Similar to the heat-map decoder, the mask decoder also estimates the hand
segmentation mask ∈ R1×256×256 based on the mask ft, and the mask is used for
intermediate-supervision. Skip connections between the encoder and the mask decoder
are also adopted to favor the learning.

POF Decoder. The POF decoder aims to estimate the feature maps pof ft ∈
R256×64×64 to capture semantic features that encode 3D POF encoding. Similar to the

∗corresponding author, zhangxiong@yy.com

1



14

12

0

1

2
3
4 5

6
7

8 9

10

11

12
16

2
0
19

18

17

15

13

0

1

2
3

4

5
6

7

8

9

10

11

16

17

18

19

13

14

15

Figure 1: Hand Hierarchy. The figure presents a hand image sample, the correspond-
ing 2D hand key points, and the bone skeleton hierarchy S, respectively.

heat-map decoder, the POF decoder also estimates the pof ∈ R20×3×128×128 based on
the pof ft, and the pof is used for intermediate-supervision. Skip connections between
the encoder and the POF decoder are also adopted to favor the learning procedure. As
Figure 1 demonstrates one typical hand image, each hand image consists of 21 hand
key points and 20 hand skeleton bones.

Task Attention Module. The task attention module (TAM) aims to bring together
semantic features across individual tasks. Concretely, the TAM aggregates hms ft,
mask ft, and pof ft to build the high-level task agnostic semantic features tam ft ∈
R256×64×64. In practice, the TAM consists of three average pooling operations and
certain point-wise convolutional layers.

Regressor Head. The purpose of the regressor head is to regress the hand shape
β ∈ R10, hand pose θ ∈ R15×3, global rotation R ∈ R3, and global translation T ∈ R3.
We shall point out a subtle but important detail here. In the blend skinning procedure
of MANO [11], the correct way to obtain the 3D hand joints is rotating the rest hand
joints J(β) with the pose parameters θ. However, [18] firstly proposed a misleading
way to obtain the 3D hand joints by linear blending the vertices in the hand mesh with
blending weights J . In fact, the blending weight J can only be used to estimate the
hand joints from hand mesh in rest pose ( see [7] for more technical details ). Since
then, certain works adopt similar misleading strategy to infer 3D hand joints [6, 8]
from the recovered hand mesh representation. For instance, [8] proposes to regress of
the 778 vertices that constitute the hand mesh, then obtains the hand joints by blending
the vertices with J . We sincerely expect that such misleading usage will not happen
since we point out it in this work.

1.2 Training Objective
Achieving Self-Supervised Learning. To conduct the self-supervised learning (SSL),
we employ two inherent constraints maintained among the reasonable predictions from
each task. Specifically, 1) we use a differentiable renderer to obtain the re-projected
hand mask that is also differentiable, and adopt the L1 norm to penalize the misalign-
ment between the re-projected hand mask and the estimated segmentation mask from
the segmentation branch; 2) Equation 1 ( see main paper ) can be adopted to achieve a
differentiable hand pose from the heat-maps. One may also obtain another hand pose
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by projecting the 3D hand joints inferred from the hand mesh and employing the L2

norm to make the two intermediate hand poses close to each other.

2 Experiment Details
In this section, we mainly introduce the configurations of all experiments.

2.1 Datasets
We mainly involve the CMU Panoptic Dataset (CMU) [12], the Rendered Hand dataset
(RHD) [20], the Stereo Hand Pose Tracking Benchmark (STB) [17], the FreiHAND
[21], the Dexter Object [13], and the HIU-Data.

CMU Panoptic Dataset (CMU). The CMU dataset [12] is an accurate large-scale
dataset which contains hand images in various poses observed from multiple views in
the Panoptic studio. The MPII+NZSL dataset is also contained in [12], and we only
exploit the MPII+NZSL part .

Rendered Hand Dataset (RHD). The RHD dataset [20] is a synthetic dataset that
contains 41, 258 training samples and 2, 728 testing samples. Each sample contains an
RGB image, a depth image, a segmentation mask image, and both 2D/3D hand pose of
the 21 standard key points.

Stereo Hand Pose Tracking Benchmark (STB). The STB [17] contains sequences
with 6 different backgrounds. In this paper, the similar strategy [2, 18] is adopted to
align the root joint of STB to make it consistent with the standard hand hierarchy (see
Figure 1), and we adopt the guidance given by [20] to split STB into training and testing
part.

Dexter Object Dataset. The Dexter Object [13] consists of 6 video sequences
with 2 actors, which shows interactions of an actor’s hand with a cuboid object from a
third person view. For each sample, fingertip positions and cuboid corners are manually
annotated for all sequence.

FreiHAND Dataset. The FreiHAND [21] contains 32, 650 training samples and
3, 960 testing images with MANO pose and shape parameters. In this paper, only
the 3D hand joints, hand segmentation masks, and the 2D hand pose annotations are
exploited for training. Note that, the annotation quality in FreiHAND is not good
enough.

Hand Image Understanding Dataset. The collected HIU-Data fills the void that
no accessible large-scale datasets contain high-quality hand masks and various chal-
lenging pose gestures. Specifically, the HIU-Data consists of 30, 000 training samples
and 3, 000 testing samples. For each sample, both the 2D hand pose and hand mask are
manually annotated rather than generating an approximate label automatically. 1

1The dataset will be publicly available, and we sincerely expect that the HIU-Data will be beneficial to
the community.
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Dataset Components SSL2D Pose 3D Pose Mask Mesh MANO

STB [17] 7 7 - - - 3
RHD [20] 3 3 3 - - 3
Dexter [13] 7 7 - - - 3
FreiHAND [21] 7 3 7 7 7 3
CMU [12] 7 - - - - 3
HIU-Data 3 - 3 - - 3

Table 1: Experiment Configuration. The table presents the dataset configuration
for qualitative comparisons. In which, MANO refers the ‘ground-truth’ MANO [11]
parameters, Mask refers the annotated hand segmentation mask, and SSL refers the
self-supervised learning strategy. 3 for 2D Pose indicates exploiting 2D hand pose
annotation for supervised learning; 7 for 2D Pose denotes does not employ the 2D
pose annotation for supervised learning; so to the 3D Pose, Mask, Mesh, and MANO.

Dataset Components SSL2D Pose 3D Pose Mask Mesh MANO

STB [17] 7 3 - - - 3
RHD [20] 7 7 7 - - 7
Dexter [13] 7 7 - - - 3
FreiHAND [21] 7 3 3 7 7 7
CMU [12] 7 - - - - 3
HIU-Data 3 - 3 - - 7

Table 2: Experiment Configuration. The table presents the data configuration for
quantitive evaluating on the STB [17], Dexter Object [13], FreiHAND [21], CMU
[12], and the HIU-Data. In which, each table element shares the same definition as
Table 1.

2.2 Dataset Configuration
We have evaluated our HIU-DMTL framework on STB, RHD, Dexter Object, Frei-
HAND, CMU, and the HIU-Data datasets in the main paper. Existing approaches
adopt various dataset configurations to benchmark the above datasets, For instance,
[3] exploits additional 315, 000 training samples, [1] adopts MANO to generate extra
training datas, [19] turns to training on datasets [9, 12, 20] jointly, and [4] synthesizes
a new large-scale dataset. Further, [1, 3, 4, 8] fully exploits labels that are hard
to obtain in real-world situations, such as the whole hand mesh annotations and
synchronized data from depth-sensor. By contrast, HIU-DMTL entirely exploits
easily annotated labels for supervised training, such as 2D hand pose, hand segmenta-
tion mask, and sometimes 3D hand joints. Besides, only a portion of data/labels are
used for supervised training, and most images are exploited to achieve self-supervised
learning only.

In this work, we try our best to find suitable data configurations for fair compar-
isons with SOTAs on the above datasets. Table 1 presents the data configuration for
qualitative evaluation experiments. Table 2 reports the data configurations in the train-
ing procedure to benchmark on STB [17], Dexter Object [13], FreiHAND [21], CMU
[12], and the HIU-Data, while a different data configuration ( Table 3 ) was adopted
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Dataset Components SSL2D Pose 3D Pose Mask Mesh MANO

STB [17] 7 7 - - - 7
RHD [20] 3 3 3 - - 3
Dexter [13] 7 7 - - - 7
FreiHAND [21] 7 7 7 7 7 7
CMU [12] 7 - - - - 7
HIU-Data 3 - 3 - - 3

Table 3: Experiment Configuration. The table presents the dataset configuration for
quantitive evaluating on the RHD [20]. In which, each table element shares the same
definition as Table 1.

to benchmark on RHD [20] due to the domain gap [9, 18] between RHD and other
real-world datasets. In all experiments, the ground-truth MANO parameters and
hand mesh representations are never exploited for training and evaluation, though
using those additional annotations may further improve the performance ([3, 8]
et.al, have exploited those labels to achieve SOTA results).

We shall point out a exceptional case, in the ablation study of the Multi-Task Learn-
ing Setup, to make a fair ablation study, we split out 20% training samples for testing
the performance of each task, and only the other 80% training samples are used for
training the HIU-DMTL framework.

2.3 Network Configuration.
In the absence of explicit instructions, a 4-stack HIU-DMTL framework is employed
to conduct experiments on the above datasets, and the exceptions are as follow,

1. In the ablation study of the Multi-Task Learning Setup, we conduct the ablation
experiments with a 1-stack HIU-DMTL framework to eliminate the interferences
of other components.

2. In the ablation study of the Task Attention Module (TAM), we conduct the ab-
lation experiments with a 4-stack and 1-stack HIU-DMTL framework that have
similar FLOPs to better investigating the effect of the TAM under various con-
figurations.

3. In the ablation study of the Cascaded Design (CD) Paradigm, we firstly design a
8-stack HIU-DMTL framework to explore the performance of each intermediate
stack. Secondly, we design three models, which contain 1, 2, and 4 stacks (with
similar FLOPs) to investigate the impact of the number of stacks.

3 Additional Evaluation.
2D Hand Pose Estimation. We present the quantitative compare comparison re-
sults with Stacked Hourglass [10], Convolutional Pose Machines [15], and HRNet [?].
As Table 4 reports the quantitative results on HIU-Data, our HIU-DMTL framework
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Hourglass [10] CPM [15] HRNet [14] HIU-DMTL

AUC 0.814 0.821 0.852 0.867

Table 4: Performance of 2D Hand Pose. The table presents the quantitative results
of 2D hand pose of [10, 15, 14] and Ours (HIU-DMTL), respectively. Approaches
[10, 15, 14] are trained on the HIU-Data with the public accessible code.

2D Pose 2D Pose† Hand Mask Hand Mask† 3D Pose Hand Mesh
Ours 0.866 0.704 0.974 0.770 0.860 0.856
[16] 0.869 0.695 0.970 0.761 0.854 0.851

Table 5: Ablation Study. The table presents the ablation results across differ-
ent POF encodings under various evaluation metrics, where † indicates inferring the
pose/mask by projecting the 3D pose/mesh with proper camera parameters. The 3D
hand pose/mesh are quantified on FreiHAND benchmark, while the 2D pose/mask are
evaluated on the HIU-Data, since the quality of masks in FreiHAND benchmark is not
good enough.

largely outperforms the classical methods [10, 15] and achieves better performance
than [?].

Ablation of POF Encoding. We compare our POF encoding with that proposed
by [16], and the comparison results are reported in Table 5. One may observe that, in
terms of most evaluation metrics, our POF encoding obtains better performance than
that exploited in [16].

4 More Qualitative Results.
The main paper presents several qualitative comparing results over the state of the art
approaches. To better inspect the performance of HIU-DMTL in challenging situations,
we randomly draw some representative samples from the FreiHAND [21] dataset and
visualize the results below. One may observe that harnessing the advantages of the
multi-task learning setup and the self-supervised learning strategy, our method can
produce reasonable estimation in most typical challenging situations.

We kindly suggest the reviewers to review the demo videos in the supplemen-
tary for more detailed presentations, where the segmentation mask, 2D hand pose,
and recovered hand mesh are well visualized on in-the-wild videos.
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Figure 2: More Qualitative Results. The figure presents more qualitative results on
the challenging FreiHAND dataset [21], which covers diverse situations, e.g., hard
hand pose, exaggerated camera view, hand object interaction, and heavy occlusion.

8



References
[1] Adnane Boukhayma, Rodrigo de Bem, and Philip HS Torr. 3d hand shape and pose from

images in the wild. In Proceedings of the IEEE conference on computer vision and pattern
recognition, 2019. 4

[2] Yujun Cai, Liuhao Ge, Jianfei Cai, and Junsong Yuan. Weakly-supervised 3d hand pose
estimation from monocular rgb images. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 666–682, 2018. 3

[3] Liuhao Ge, Zhou Ren, Yuncheng Li, Zehao Xue, Yingying Wang, Jianfei Cai, and Junsong
Yuan. 3d hand shape and pose estimation from a single rgb image. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 10833–10842, 2019.
4, 5

[4] Yana Hasson, Gul Varol, Dimitrios Tzionas, Igor Kalevatykh, Michael J Black, Ivan
Laptev, and Cordelia Schmid. Learning joint reconstruction of hands and manipulated
objects. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 11807–11816, 2019. 4

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 1

[6] Dominik Kulon, Riza Alp Guler, Iasonas Kokkinos, Michael M Bronstein, and Stefanos
Zafeiriou. Weakly-supervised mesh-convolutional hand reconstruction in the wild. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
4990–5000, 2020. 2

[7] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J
Black. Smpl: A skinned multi-person linear model. ACM Transactions on Graphics (TOG),
34(6):248, 2015. 2

[8] Gyeongsik Moon and Kyoung Mu Lee. I2l-meshnet: Image-to-lixel prediction network
for accurate 3d human pose and mesh estimation from a single rgb image. arXiv preprint
arXiv:2008.03713, 2020. 2, 4, 5

[9] Franziska Mueller, Florian Bernard, Oleksandr Sotnychenko, Dushyant Mehta, Srinath
Sridhar, Dan Casas, and Christian Theobalt. Ganerated hands for real-time 3d hand track-
ing from monocular rgb. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 49–59, 2018. 4, 5

[10] Alejandro Newell, Kaiyu Yang, and Jia Deng. Stacked hourglass networks for human pose
estimation. In European Conference on Computer Vision, pages 483–499. Springer, 2016.
1, 5, 6

[11] Javier Romero, Dimitrios Tzionas, and Michael J Black. Embodied hands: Modeling and
capturing hands and bodies together. ACM Transactions on Graphics (TOG), 36(6):245,
2017. 2, 4

[12] Tomas Simon, Hanbyul Joo, Iain Matthews, and Yaser Sheikh. Hand keypoint detection in
single images using multiview bootstrapping. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 1145–1153, 2017. 3, 4, 5

[13] Srinath Sridhar, Franziska Mueller, Michael Zollhöfer, Dan Casas, Antti Oulasvirta, and
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