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1. Video Demo
A video demo that visualizes the construction of HOZ

graph, navigation with HOZ graph and more case studies
can be found at the following url:

https://drive.google.com/file/d/
1UtTcFRhFZLkqgalKom6_9GpQmsJfXAZC/view?
usp=sharing

2. Navigation Target
The target objects of different scenes in AI2THOR [4]

are shown in Table 1. Our training and testing share the
consistent target objects categories, though the testing envi-
ronments are new and unseen.

Considering that each environment in AI2THOR usually
contains one room, the agent navigation may be limited to
short trajectories. Thus, for longer trajectories object nav-
igation, we also conduct experiments on a more complex
simulator RoboTHOR [2], which has 2.4 times larger area
and 5.5 times longer trajectory length than AI2THOR. The
environment in RoboTHOR usually contains a variety of
rooms. To highlight the differences between AI2THOR and
RoboTHOR, we define each environment in AI2THOR as
room and that in RoboTHOR as apartment. In RoboTHOR,
12 objects categories are selected as target objects for train-
ing and testing, involving Book, Bowl, Chair, Plate, Tele-
vision, Floor Lamp, Garbage Can, Alarm Clock, Desk
Lamp, Laptop, Pot, CellPhone. The experimental results
are shown in Section 4.1.

3. More Ablation Studies
3.1. Clustering information

In our method, we sample a set of features (f, l) ac-
cording to the observations in the environments, where f is
a bag-of-objects vector representing objects categories de-

Table 1. Object categories for navigation. The target objects cat-
egories of different room types in AI2THOR [4].

Scenes Objects

Kitchen

Fridge, Light Switch, Pot,
Coffee Machine, Sink, Pan,
Chair, Plate, Bowl, Toaster,

Stove Burner, Kettle,
Microwave, Garbage Can

Living Room

FloorLamp, Chair, Plate,
Light Switch, Garbage Can,

Laptop, Remote Control, Book,
Television, Desk Lamp

Bedroom
Book, Light Switch, Bowl,
Desk Lamp, Laptop, Chair,
Alarm Clock, Garbage Can,

Bathroom Light Switch, Garbage Can,
Sink

tected in view, and l represents the sample location. Then
we implement feature clustering on f , and each obtained
cluster serves as a zone node in room-wise HOZ. That is to
say, our zone node is only based on visual information. In
order to further explore the impact of clustering, we intro-
duce the additional location information and cluster on both
(f, l). Table 2 demonstrates the navigation performance
with these two clustering methods. The results show that
clustering on both visual and location information drops
2.40/2.12% and 2.16/1.05% in SR and SAE and slightly
improves in SPL, suggesting that the additional location in-
formation narrows the range of our proposed zone. In other
words, our HOZ (clustering on visual information) treats all
regions where agent can observe similar objects with a spec-
ified direction as a zone, while clustering with both visual
and location information restrains the zone region merely
around these objects. Thus, location is more like a con-
straint rather than helpful information, limiting the visual
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Table 2. Comparisons with different information used for clustering (%). The zone clustering is based on different information,
including visual information f (Visual) and location information l (Location).

Visual Location ALL L ≥ 5
SR SPL SAE SR SPL SAE

√
70.62±1.70 40.02±1.25 27.97±2.01 62.75±1.73 39.24±0.56 30.14±1.34√ √
68.22±1.54 40.48±1.07 25.81±1.78 60.63±1.46 37.92±0.48 29.09±1.01

Table 3. Comparisons with different detection modules (%). We compare the impact of utilizing a pre-trained detection model (Detection
Pre) or the ground truth of object detection (Detection GT).

Module ALL L ≥ 5
SR SPL SAE SR SPL SAE

Detection Pre 65.12±1.03 37.86±0.93 24.36±0.91 53.42±1.43 35.37±0.71 25.32±1.04

Detection GT 66.78±0.73 55.91±0.46 26.73±0.26 55.02±0.68 48.73±0.31 30.23±0.33

generalization of the proposed HOZ graph. When the target
object is not in view, agent needs to search more zones until
discovering the target. It is obviously inefficient so that we
obtain zone nodes for HOZ only based on visual informa-
tion.

3.2. Object detection module

Table 3 shows the impact of different detection mod-
ules on navigation performance, where Detection Pre in-
dicates that the detection module is pre-trained with la-
beled egocentric images sampled in simulator, and Detec-
tion GT indicates that the detection module is ground truth
provided by simulator. The ablation with ground truth de-
tection improves performance by 1.66/1.60 , 2.37/4.91 and
18.05/13.36 in SR, SAE and SPL (ALL/L ≥ 5, %) respec-
tively. The results demonstrate that accurately recognizing
more objects can help agent navigate successfully in shorter
trajectories. It is easy to understand because agent can take
the most likely action at each step to obtain the high SPL.
However, since the navigation task includes multiple deci-
sion steps, its success rate does not rely on taking the per-
fect action at each step. As long as most actions are rea-
sonable, the agent can still achieve success. So the approx-
imate results on SR and SAE indicate that our HOZ graph
still makes sense in guiding unseen object navigation.

3.3. The ablations of graph settings

Since our HOZ graph adds more parameters to the
model, we perform additional ablations of zone nodes and
edges, as indicated in Table 4. To assess if the gain in net-
work performance is due to the increased number of pa-
rameters or the information contained in the HOZ graph’s
nodes and edges, We respectively set the edges and nodes of
the HOZ graph to random. The experimental results show
that the control experiments with random settings perform
worse than the original value, demonstrating the efficacy of
zone information (nodes) and spatial priors (edges).

Zone 1

Zone 2

Zone 3

Zone 4

Zone 5

Zone 6

Zone 7

Zone 8

Figure 1. Zones nodes of Hierarchical Object-to-Zone Graph. 8
different colors represent different zones. To highlight the objects
contained in these zones, we mark them with bounding boxes.

4. More comparisons with the related works

4.1. Experiments on RoboTHOR

For longer trajectories object navigation, we also
conduct experiments on RoboTHOR [2] simulator.
RoboTHOR consists of 89 apartments, 75 for training and
validation, while the testing data have not yet been made
public. Therefore, we choose 60 apartments for training,
5 for validation and 10 for testing. Since the regions in
RoboTHOR are simply separated with several clapboard,
we treat each apartment as a whole rather than subdividing
it into scattered scenes. Therefore, different from the
construction of scene-wise HOZ graph in AI2THOR,
we build apartment-wise HOZ graph in RoboTHOR and
establish a unified HOZ graph combing all apartments.

Table 5 illustrates that our method still outperforms the
state-of-the-art with a large margin by 2.66/2.30 in SR,



Table 4. More ablations of graph settings (%). The parameters of nodes or edges are randomly set (R) or kept (K).

Nodes Edges ALL L ≥ 5
SR SPL SAE SR SPL SAE

R R 67.81±0.62 38.92±0.22 24.13±0.35 57.84±0.81 38.22±0.44 24.02±0.52

K 68.52±1.05 39.83±0.52 26.52±0.62 58.61±0.82 38.73±0.62 28.73±0.53

K R 69.33±0.32 39.71±0.32 26.63±0.13 59.93±0.53 39.14±0.45 29.01±0.312

K 70.47±0.35 40.66±0.47 27.85±0.44 62.17±0.26 40.14±0.46 30.33±0.25
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Figure 2. Visualization of trajectory in RoboTHOR. Black arrows represent rotations. The trajectory of the agent is illustrated with
green and blue arrows, where green is the beginning and blue is the end.



Table 5. Comparisons with the related works in RoboTHOR [2] (%). We repeat the evaluations similar to AI2-Thor on RoboTHOR.

Method ALL L ≥ 5
SR SPL SAE SR SPL SAE

Non-adaptive method
Random 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

A3C (baseline) 26.41±0.52 16.61±0.34 13.15±0.43 17.42±0.21 12.23±0.66 10.94±0.35

SP [7] 28.04±0.33 17.63±0.26 14.23±0.25 21.66±0.32 15.14±0.46 13.27±0.34

ORG [3] 29.61±0.71 19.23±0.94 14.72±0.64 22.53±0.55 15.73±0.86 13.82±0.44

Ours (HOZ) 32.27±1.14 20.48±0.63 17.18±0.42 24.83±0.72 16.89±0.50 15.62±0.55

Self-supervised method
SAVN [5] 28.42±0.41 17.82±0.33 13.91±0.24 22.13±0.32 15.34±0.45 13.01±0.24

ORG-TPN [3] 30.01±1.22 20.51±0.74 14.52±0.93 22.25±0.63 16.64±0.35 13.83±0.45

Ours (HOZ-TPN) 33.28±1.62 22.13±0.91 16.66±0.62 24.98±1.32 18.05±0.64 15.57±0.76

Table 6. Comparisons with the related works in AI2THOR (%). These results are the supplement for Table 3 in the main text.

Method All L ≥ 5
Suc. SPL SAE Suc. SPL SAE

Non-adaptive method
Random 3.56±2.74 1.73±1.52 0.41±0.52 0.27±0.22 0.07±0.06 0.06±0.05

A3C (baseline) 57.35±1.92 33.78±1.33 19.02±1.36 45.77±2.17 30.65±1.01 20.04±1.87

SP [7] 62.16±0.70 37.01±0.68 23.39±0.69 50.86±0.34 34.17±0.85 24.35±0.74

ORG [3] 66.38±0.95 38.42±0.22 25.36±0.43 55.55±1.89 36.26±0.39 27.53±0.48

Ours (HOZ) 70.62±1.70 40.02±1.25 27.97±2.01 62.75±1.73 39.24±0.56 30.14±1.34

Self-supervised method
SAVN [5] 63.32±1.17 37.62±0.86 21.97±0.21 52.38±0.73 35.31±0.79 24.64±0.52

ORG-TPN [3] 67.31±1.14
39.53±1.01 23.07±0.24 57.41±0.71 38.27±0.63 26.37±0.57

Ours (HOZ-TPN) 73.15±1.01 39.22±1.27 29.49±0.11 64.58±0.74 39.80±0.57 30.92±0.40

1.25/1.16 in SPL and 2.46/1.80 in SAE metric (ALL/L ≥ 5,
%). Besides, compared with self-supervised methods, our
method equipped with the equal self-supervised adaptive
module also gains significant improvement of 3.27/2.73
in SR, 1.62/1.41 in SPL and 2.14/1.74 in SAE metric
(ALL/L ≥ 5, %).

In addition, we supplement the experimental results of
variance for Table 3 in the main text. The complete experi-
mental results are shown in Table 6.

4.2. Comparisons with semantic map

In addition, Chaplot et al. [1] attempt to construct the
episodic semantic map and use it to explore the unseen en-
vironment. Different from our method that only relies on
RGB input, the semantic map is constructed based on a va-
riety of inputs, including RGB-D input, segmentation mask
and GPS coordinate. We evaluate the HOZ graph and the
semantic map in Gibson [6], where all methods utilize the
RGB-D input, segmentation mask and GPS coordinate. As
indicated in Table 7, since the SLAM-based method pro-
cesses multiple inputs more completely, the performance of
the baseline with the HOZ graph is slightly inferior than Se-
mExp. However, incorporating the HOZ graph for SemExp

Table 7. Comparisons with the semantic map in Gibson (%).
The baseline is the A3C model with a simple visual embedding
layer to encode various inputs. Since the path lengths of all
episodes are larger than 5, the subset of L ≥ 5 is excluded.

Method SR SPL SAE
Baseline + HOZ 43.47±0.51 12.88±0.36 11.67±0.51

SemExp [1] 44.01±0.47 14.34±0.42 12.32±0.43

SemExp + HOZ 45.19±0.35 14.68±0.38 12.73±0.45

improves the SR, SPL and SAE by 1.18, 0.34, 0.41 (ALL,
%) respectively, indicating that the HOZ graph and SLAM-
based method learn complementary information. The ex-
perimental results demonstrate that the HOZ graph is also
effective when combined with SLAM-based methods.

5. Qualitative Results

5.1. The HOZ graph visualization

Figure 1 illustrates the visualization of our HOZ graph.
We visualize the zones nodes in a scene-wise HOZ graph
(e.g., living room), which is the fusion of 20 room-wise
HOZ graphs. There are 8 zones marked with different col-



ors and each zone consists of similar objects distribution.
Even though there are overlapped objects among zones,
each zone has semantically representative objects. For in-
stance, in Figure 1, zone2, zone3, zone6 focus on laptop,
garbage can and television, respectively.

5.2. Navigation trajectory

Figure 2 qualitatively compares our method with the
baseline in RoboTHOR. Benefiting from the sub-goals
guidance and online-updating of proposed HOZ graph,
agent can still adopt reasonable actions even in the long tra-
jectory unseen navigation task, while the baseline model of-
ten falls into confusion and struggles with spinning around.
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