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A. Content

The content of this supplementary material involves:

e Network structure of GCM, LiteISPNet and the dis-
criminator of LiteISPGAN in Sec.

* Visual results of alignment in Sec. [C|
* Qualitative results of ablation study in Sec.
* Implementation details on SR-RAW dataset in Sec.

* Quantitative results for re-splitting the train/test set on
ZRR dataset in Sec.[El

* Additional visual comparison results on SR-RAW and
ZRR dataset in Sec.

B. Network Structure

Global color mapping (GCM) module involves two com-
ponents: spatially preserving network (SPN) and GuideNet.
SPN stacks 1 x 1 convolutional layers to guarantee spa-
tial independence of the mapping and GuideNet generates a
conditional guidance vector from the target SRGB to modu-
late SPN features. The detailed structure of GCM are shown
in Table [Al

The structure configuration of LiteISPNet are shown
in Table LiteISPNet is a U-Net [[7] based multi-level
wavelet ISP network. In each residual group, we only apply
4 residual channel attention blocks (RCABSs).

The discriminator structure of LiteISPGAN are shown in
Table |C} We apply 54 x 54 PatchGAN [11]], which distin-
guishes whether the image patch is real or fake.

C. Visual Results of Alignment

We show the demosaicked raw image (%), GCM out-
put (), LiteISPNet output (y), warped target SRGB image
(y") and the original target SRGB image (y) in Fig.[A]

It can be seen that the color of y is consistent with y. Al-
though GCM model cannot perform local operations (e.g.,
denoising), benefiting from PWC-Net [8]], we can still align
y with y robustly. Under the supervision of well aligned
training data, LiteISPNet output has almost no pixel shift.

In short, our method achieves the joint of image alignment
and RAW-to-sRGB mapping.

D. Qualitative Results on Ablation Study

We show more qualitative results of different alignment
strategies in Fig.[B]

Due to the limitation of space in the submitted
manuscript, we only showed the outputs of GCM model in
Sec. 5.2. Here, by visualizing the illuminance ratio between
the output of GCM and ground-truth (GT), we show the in-
fluence of each component and the dark corner phenomenon
more clearly in Fig.

E. Implementation Details on SR-RAW

Dataset

In each image pair of the SR-RAW dataset, the short
focal-length raw image is used as input, while the long
focal-length sSRGB image is adopted as the ground-truth.
In order to align high-resolution (HR) sRGB images with
low-resolution (LR) raw images, we adopt downsampled
HR sRGB image y, to generate the conditional guidance
vector in the GCM model. Then the optical flow between
the GCM output y and y is estimated. Note that the size
of optical flow is a quarter of the HR sSRGB image. Thus,
we upsample the optical flow to get the warped HR sRGB
image. Finally, the warped HR sRGB image is utilized to
supervise the learning of the backbone (SRResNet [5]]).

Following [10]], we use 400 scenes of images for train-
ing, 50 for validation, and the rest 50 for testing, and report
the performance on 35/150 mm pairs in Table 2 of the main
text. For a comprehensive comparison, we further show the
performance on all 24/100, 35/150 and 50/240 test pairs in
Table[Dl It can be seen that our method can still achieve bet-
ter quantitative performance against all competing methods.



Table A: Structure configuration of GCM model. GCM involves two components: SPN (left column) and GuideNet (right
column). Except for the stride of the first convolutional layer in GuideNet is 2, the stride of other convolutional layers is 1.

Spatially Preserving Network (SPN) GuideNet
Layer Output size  Kernel size Filter Layer Output size  Kernel size Filter
Conv, ReLU 448 x 448 1x1 5— 64 Conv 222 x 222 77 8 — 32
[Conv, ReLU] x3 448 x 448 1x1 64 — 64 Conv, ReL.U, Conv 222 x 222 3x3 32 — 32
Conv 448 x 448 1x1 64 — 3 || Global Average Pooling 1x1 - -
Conv 1x1 1x1 32 — 64

Table B: Structure configuration of LiteISPNet. DWT and
IWT denote discrete wavelet transform and inverse wavelet
transform, respectively. RG denotes the residual group con-
taining 4 residual channel attention blocks (RCABs).

Table C: Structure configuration of the discriminator. The
kernel size of all convolutional layers is 4 x 4. The stride of
the first three convolutional layers is 2, while the stride of
the last two convolutional layers is 1.

Discriminator
Layer Output size Filter
Conv, LeakyReLU 224 x 224 3— 64
Conv, BatchNorm, LeakyReLU 112 x 224 64 — 128
Conv, BatchNorm, LeakyReLLU 56 X 56 128 — 256
Conv, BatchNorm, LeakyReLLU 55 X 55 256 — 512
Conv, BatchNorm, LeakyReLLU 54 x 54 512 — 1

Table D: Average results on all 24/100, 35/150 and 50/240
test pairs of SR-RAW dataset. Methods taking LR sRGB
image as input are marked with f. The metrics are computed
by Align GT with result.

Method PSNR? / SSIM? / LPIPS|
SRGANT [5] 21.7270.6917 / 0.394
ESRGAN' [9] 21.85/0.6904 /0.393
SPSRT [6] 21.7570.6692 / 0.427

RealSRT [4]
Zhang et al. [|10]

21.89/0.6918 /0.388
21.9770.7360 / 0.357

LiteISPNet
Layer Output size Filter
Conv 224 x 224 4 — 64
RG 224 x 224 64 — 64
DWT 112 x 112 64 — 256
Conv 112 x 112 256 — 64
RG 112 x 112 64 — 64
DWT 56 x 56 64 — 256
Conv 56 x 56 256 — 128
RG 56 x 56 128 — 128
DWT 28 x 28 128 — 512
Conv 28 x 28 512 — 128
RG 28 x 28 128 — 128
RG 28 x 28 128 — 128
Conv 28 x 28 128 — 512
IWT 56 x 56 512 — 128
RG 56 x 56 128 — 128
Conv 56 x 56 128 — 256
IWT 112 x 112 256 — 64
RG 112 x 112 64 — 64
Conv 112 x 112 64 — 256
IWT 224 x 224 256 — 64
RG 224 x 224 64 — 64
Conv 224 x 224 64 — 64
Conv 224 x 224 64 — 256
PixelShuffle 448 x 448 256 — 64
Conv 448 x 448 64 — 3

F. Quantitative results for re-splitting the
train/test set on ZRR dataset

For the ZRR dataset, we follow the official division to
train our LiteISPNet with 46,839 pairs, and report the quan-
titative results on the remaining 1,204 pairs in the main text.
Here we conducted an experiment by re-splitting the dataset
at approximately 9 : 1, i.e., 43,200 pairs for training and the
rest 4,843 pairs for testing. Table [E] shows the quantitative
results, and it can be seen that our LiteISPNet also exceeds
the competing methods.

22.50/0.7369 / 0.329
22.56/0.7341/0.323

Ours
Ours (GAN)

Table E: Quantitative results for re-splitting the train/test set
of ZRR dataset. The metrics are computed by Align GT with
result.

Method
PyNet [3]
AWNet (raw) [|1]
AWNet (demosaicked) [[1]]
MWISPNet [2]
Ours (LiteISPNet)

PSNR? / SSIM7 / LPIPS|
22.6770.8535/0.149
22.83/0.8513/0.160
22.68/0.8447/0.173
23.00/0.8530/0.166
23.31/0.8747/0.131

G. Additional visual comparison results on SR-
RAW and ZRR dataset

In Fig. [Dp~ [l we show more qualitative comparison re-
sults generated by SRGAN [5[], ESRGAN [9], SPSR [6],
RealSR [4], Zhang et al. [|10] and our models on the SR-
RAW dataset.

In Fig.[G~ [ we show more qualitative results generated
by PyNet [3]], AWNet [1]], MWISPNet [2]] and our models
on the ZRR dataset.



(a) Demosaicked raw (x) (b) GCM output (y) (c) LiteISPNet output (y) (d) Warped target SRGB (y ™) (e) GT (y)

Figure A: Alignment visual results obtained by our joint learning framework. With the reference line, it can be observed our
method obtains the well aligned data pairs while the demosaicked raw is not aligned with GT.

(a) Raw image (b) SIFT (baseline) (c) Aligny toy (d) Aligny tox (e) Align y to y (Ours) f) GT

Figure B: Visual results of LiteISPNet output y. (b)~(e) denote different alignment strategies. Our method (e) performs
favorably against other alignment strategies.
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Figure C: Visual results of GCM output y. (b)~(d) denote the results using different GCM components. (f)~(h) denote the
illumination ratio between (b)~(d) and GT, respectively. With the guidence of y, the color of GCM output y in (c) and (d) is
closer to the target SRGB image. Dark corner can be observed in (b) and (c). In (b) and (c), the patch in the blue box is darker
than the patch in the red box. But in (d) and (e), the patch in different boxes has similar illumination. The phenomenon can
be seen more clearly in (f)~(h).



(a) Bicubict (b) SRGANT [5] (c) ESRGANT [9] (d) SPSRT [6] (e) RealSRT [4]

(f) Raw image (visualized) (g) Zhang et al. [|10] (h) Ours (i) Ours (GAN) G) GT

Figure D: Visual comparison on SR-RAW dataset. T means that the result is obtained given LR sRGB image as input. Our
results have more textures on the leaves.

(a) Bicubic’ (b) SRGANT [5] (c) ESRGANT [9] (d) SPSRT [6] (e) RealSRT [4]

(f) Raw image (visualized) (g) Zhang et al. [|10] (h) Ours (i) Ours (GAN)

Figure E: Visual comparison on SR-RAW dataset. T means that the result is obtained given LR sSRGB image as input. The
edges of our results are sharper. It can be clearly observed in the red box.



(a) Bicubic' (b) SRGAN' (c) ESRGANT [9] (d) SPSRT [6] (e) RealSRT

.

(f) Raw image (visualized) (g) Zhang et al. (h) Ours (i) Ours (GAN) G) G

Figure F: Visual comparison on SR-RAW dataset. T means that the result is obtained given LR sSRGB image as input. The
edges of our results are sharper.

(a) Raw image (visualized) (b) PyNet (c) AWNet (raw) (d) AWNet (demosaicked)

(e) MW-ISPNet (GAN) (f) Ours (LiteISPNet) () Ours (LiteISPGAN) (h) GT

Figure G: Visual comparisons on ZRR dataset. Our results have less noise.



(a) Raw image (visualized) (b) PyNet (c) AWNet (raw) (d) AWNet (demosaicked)

(e) MW-ISPNet (GAN) (f) Ours (LiteISPNet) (g) Ours (LiteISPGAN)

Figure H: Visual comparisons on ZRR dataset. Our results have richer textures on the grass.

(a) Raw image (visualized) (c) AWNet (raw) (d) AWNet (demosaicked)

(e) MW-ISPNet (GAN) (f) Ours (LiteISPNet) (g) Ours (LiteISPGAN)

Figure I: Visual comparisons on ZRR dataset. The tree branches in our results are clearer.
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