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In this Supplementary Material, we provide details and
results omitted in the main text.

• Appendix A: contributions. (§ 7 of the main paper)

• Appendix B: additional details and results on pseudo-
label generation. (§ 5.1 of the main paper)

• Appendix C: ablation studies on image mosaicking.
(§ 5.2 of the main paper)

• Appendix D: further analysis on self-training. (§ 6.1
and § 6.2 of the main paper)

• Appendix E: further analysis on data quality of object-
centric images. (§ 3 and § 6.3 of the main paper)

• Appendix F: comparison to adversarial training. (§ 4
of the main paper)

• Appendix G: implementation details of MOSAICOS
on object detection and instance segmentation. (§ 6.1
and § 6.4 of the main paper)

• Appendix H: detailed results on LVIS v0.5. (§ 6.2 and
§ 6.4 of the main paper)

• Appendix I: detailed results on LVIS v1.0. (§ 6.4 of
the main paper)

• Appendix J: qualitative results of object detection on
LVIS v0.5. (§ 6.2 of the main paper).

A. Contribution and Novelty
Our main contributions are in the idea of using object-

centric images (OCI) to facilitate long-tailed object detec-
tion on scene-centric images (SCI) as well as a concrete im-
plementation of this idea that is both simple and effective.
This is by no means trivial; for instance, a related work [15]

∗Equal contributions

with a more sophisticated approach can hardly improve the
accuracy (Table 5 of the main paper). While most exist-
ing works focus on designing new algorithms to learn from
long-tailed data, our proposal is orthogonal to them, and can
be combined together for further improvement.

Although leveraging auxiliary data to improve common
object detection has been studied previously, existing works
typically assume access to well prepared data from a similar
visual domain, with sufficient object instances. However,
collecting and annotating such auxiliary data is extremely
challenging in long-tailed object detection. In contrast, our
method does not have such a limitation as we make use of
object-centric images readily available over the Internet (via
search engines), which contains sufficient object instances
though in a slight different domain. Particularly, we observe
that making use of such rich object-centric images (from
ImageNet) leads to more superior empirical performances
against [15], which uses YFCC-100M [22].

To enable more general applicability, we make the design
of our framework as straightforward as possible. Along this
process, two challenges are identified, i.e., the gap between
visual domains and the lack of object labels. To address
them, we investigate simple algorithms such as fixed box
locations, mosaicking, and multi-stage training. We note
that more sophisticated techniques can be incorporated as
well. The facts that (a) our framework performs on par with
state-of-the-art long-tailed detection methods and (b) many
existing techniques can be easily plugged into our frame-
work further justify the potential of this promising direction.

While several components of our framework — mosaic,
pseudo-labeling, two-stage fine-tuning — have been indi-
vidually explored in prior works in different contexts, a
suitable combination is essential and novel for our idea to
work. Further, our use of mosaic on OCI is different from
[1, 3], as shown in Figure A. Our contributions also in-
clude extensive analysis that justifies the importance of each
component. These insights led to a simple and effective



Stitching SCI [3] Stitching SCI [1] MOSAICOS (ours)SCI in LVIS

Figure A. Different stitching methods. MOSAICOS introduces
more diverse examples by leveraging object-centric images, while
existing methods [1, 3] only perform data augmentation using
scene-centric images.

framework, which we consider a strength. For example, our
LORE approach (§ B.2) could have provided methodolog-
ical novelty. But its small gain over simple fixed locations
does not justify the inclusion of it into our final framework.

B. Pseudo-Label Generation
B.1. Trust the calibrated detector and image labels

We provide analysis on pseudo-label generation with de-
tector calibration and imputation using image class labels.
Detector calibration. As mentioned in § 5.1 of the main
paper, we calibrate the pre-trained detector by assigning
each class a different confidence threshold according to
the class size — rare classes have lower thresholds. Fig-
ure B illustrates the difference with and without detector
calibration, and with and without imputation using the im-
age class labels. By assigning each class a different con-
fidence threshold, the calibrated detector outputs more de-
tected boxes, indicating that many rare and common objects
are missed by the pre-trained detector due to low confidence
scores (Figure B (a) vs. (c)). However, simply applying
calibration can hardly correct the wrong labels that have al-
ready been biased toward the frequent classes (blue boxes
in Figure B (c)). Next, we explore the idea of bringing the
best of image class labels to correct noisy detected labels.
The importance of imputation with image class labels.
For object-centric images, most of the object instances be-
long to the image’s class label. We therefore improve “trust
the pre-trained detector” (Figure B (a)) and “trust the cal-
ibrated detector” (Figure B (c)) by assigning each box the
image class label (see Figure B (b) and (d)). As shown in
Figure B and Table A, we see significant improvements for
both the pre-trained and calibrated detectors. Specifically,
assigning the image class label for each box can largely
boost the performance for rare objects (APb

r).

B.2. Details on LORE

Figure C shows the pipeline of localization by region re-
moval (LORE), which is introduced in § 5.1 of the main
paper for pseudo-label generation. Concretely, LORE takes
an object-centric image as the input and identifies the lo-
cations of the target object (i.e., that of image label) in the
image. The whole pipeline consists of three major compo-
nents: (1) classifier training, (2) box pre-filtering, and (3)

Pre-trained
Detector

Calibrated
Detector

w/o Image Labels w/ Image Labels

(a) (b)
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Figure B. A comparison of pseudo-label generation with de-
tector calibration and imputation using image class labels. (a)
trust the detector (D), (b) trust the detector + image class labels
(D†), (c) trust the calibrated detector, and (d) trust the calibrated
detector + class image labels (D‡). The image label is “turkey”, a
rare class in LVIS. Red/Blue boxes are labeled as “turkey”/other
classes. See § 5.1 of the main paper for details.

Table A. Results with different pseudo-labels. We use
ImageNet-21K as the source of object-centric images and report
the results of object detection on LVIS v0.5 val. Detector: object
detector used for generating pseudo-label bounding boxes; CL:
assign each box the image Class Label instead of the predicted
class label.

Detector CL APb APb
r APb

c APb
f

Faster R-CNN? – – 23.35 12.98 22.60 28.42

MOSAICOS

Pre-trained 7 23.04 13.93 21.51 28.14
Pre-trained 3 24.66 17.45 23.62 28.83
Calibrated 7 24.03 13.13 23.51 29.04
Calibrated 3 24.93 19.31 23.51 28.95

localization by removal. We describe each step as follows.
Classifier training. We train a ResNet-50 [9] image clas-
sifier with all object-centric images. For LVIS v0.5 dataset,
we follow the conventional training procedure1 to train a
1, 230-way ResNet classifier. Specifically, we train the net-
works with 90 epoch and achieve 74% top-1 training accu-
racy. We use this pre-trained classifier to rank object regions
in object-centric images.
Box pre-filtering. We feed an object-centric image into
the pre-trained object detector and collect detection results.
Concretely, we take the top 300 detected boxes of Faster
R-CNN [17] and drop each box’s predicted class label.
Next, we apply non-maximum suppression (NMS) over all
the 300 boxes using a threshold of 0.5 to remove highly-
overlapped ones. Basically, we trust the detected box loca-
tions (i.e., they do contain objects), but will recheck which
of them belongs to the target object.

To further reduce the number of candidate boxes, we sort

1https://github.com/pytorch/examples/tree/
master/imagenet

https://github.com/pytorch/examples/tree/master/imagenet
https://github.com/pytorch/examples/tree/master/imagenet
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Figure C. Illustration of LORE. We first apply a pre-trained detector to obtain candidate boxes, followed by pre-filtering. We then sort the
remaining boxes using an image classifier. Finally, we remove the boxes in turn until the classifier fail to predict the target image label. The
numbers at image corners indicate the confidence reducing ratio. Negative values mean the confidence increases after removing outliers.

the boxes by their initial detection confidence (in the de-
scending order) and then remove the corresponding regions
from the image in turn2, every time followed by applying
the image classifier to the resulting image. We stop this
process until the classification confidence of the target class
goes below a certain threshold. We then collect the removed
box locations, which together have likely covered the target
objects (high recall, but likely low precision), to be the can-
didate box pool for the next step.
Localization by removal. To accurately identify which
candidate truly belongs to the target class, we re-rank the
candidates by how much removing each boxed region alone
reduces the image classifier’s confidence on the target class.
We then follow the descending order to remove these boxed
regions in turn until the classifier fail to predict the target
class or the confidence reducing ratio3 achieves a certain
threshold. Finally, the bounding boxes of the removed re-
gions are collected as the pseudo ground-truths for the im-
age. More examples can be found in Figure D.

B.3. Discussion on fixed locations vs. LORE

Both fixed locations and LORE use accurate image class
labels. Even though LORE gives more accurate object lo-
cations (see Figure D) in pseudo-label generation, the re-
sulting detector with fixed location is just slightly worse
than that with LORE. We attribute this small gap partially

2We crop out the corresponding image regions and replacing them by
gray-color patches.

3We define the confidence reducing ratio as the relative confidence drop
on the target class label before and after removing boxes.

Table B. Fixed locations vs. LORE. We report object detection
results on LVIS v0.5 val. P-GT: ways to generate pseudo-labels.

P-GT APb APb
r APb

c APb
f

Single-stage
Fixed 20.09 12.96 19.08 24.20
LORE 21.44 14.95 20.74 24.91

MOSAICOS
Fixed 24.75 19.73 23.44 28.39
LORE 24.83 20.06 23.25 28.71

to two-stage fine-tuning, which adapts the detector back to
accurately labeled scene-centric images. As shown in Ta-
ble B, LORE notably surpasses fixed locations if we apply
single-stage fine-tuning.

B.4. Discussion on pseudo-label generation

In this subsection, we discuss multiple ways for gen-
erating pseudo-labels in object-centric images. From the
viewpoint of teacher models (i.e., the pre-trained detector
learned from a long-tailed distribution), we found that (1)
the pre-trained detector is biased toward head classes, miss-
ing many accurate rare class predictions which have lower
confidence scores; (2) detector calibration is useful to dis-
cover more bounding boxes for rare and common objects
but can hardly correct wrong predicted labels. Our obser-
vations share the similar insights with a recent study [4] on
large-vocabulary object detection.

From the other viewpoint of fine-tuning with pseudo
scene-centric images, we found that imputation using im-
age class labels leads to a notable performance gain regard-
less of inaccurate box locations (e.g., fixed box locations).
This is probably due to two reasons. First, dense boxes
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Figure D. Box locations of different pseudo-label generation methods. We show (a) fixed locations, (b) trust the pre-trained detector, (c)
trust the calibrated detector, and (d) localization by region removals (LORE). The green boxes are the pseudo ground-truth locations found
on each object-centric image alone before multiple images are stitched together. We can see that LORE accurately locates the target object
in each sub-image while detection results are much noisy. Image class labels are listed on the corner of each sub-image in column (a).

(like six fixed locations) can be treated as data augmenta-
tion for training the object detector. Second, our two-stage
fine-tuning is beneficial in learning with noisy data, i.e., first
on noisy pseudo scene-centric images and then on the clean
labeled data from LVIS.

Other possibilities for pseudo-label generation include
(1) iteratively improving the teacher detector by noisy stu-
dent learning [29] and (2) calibrating the detector with more
advanced approaches for class-imbalanced semi-supervised
learning [26], etc.

C. Additional Ablation on Image Mosaicking
Does mosaicking more images help? In this section, we

investigate the effect of different types of layouts for stitch-
ing object-centric images, i.e., 1 × 1 (which is the origi-
nal object-centric image), 2 × 2 mosaic, and 3 × 3 mosaic.
We evaluate them under the same experimental settings: we
use ImageNet-21K as the source of object-centric images
(1, 016 classes) and stitch images from the same class and
use the 6 fixed locations as pseudo ground-truths. Table C
shows the comparison of object detection results on LVIS
v0.5 dataset. We see that 2 × 2 and 3 × 3 mosaics perform

3 x 3 Mosaic2 x 2 MosaicScene-Centric Image in LVIS

Figure E. Different layouts of mosaics. We show different types
of mosaics from the same category (“windmill”). The 2×2 mosaic
image (middle) and the real scene-centric image (left) in the LVIS
dataset look alike in terms of appearance and structure while the
3× 3 mosaic image (right) is much crowded.

similarly and both outperform the 1 × 1 OCI (on APb and
APb

r). An example with different layouts of 2× 2 and 3× 3
mosaics is shown in Figure E.

D. Further Analysis on Self-training

We show detailed comparison results of self-training
baseline in Table D to further demonstrate the effectiveness
of the mosaicking and two-stage fine-tuning in our MO-
SAICOS framework. We follow the self-training method



Table C. Comparison of different types of mosaic images. Here
we use ImageNet-21K as the source of object-centric images and
stitch images from the same class and use the 6 fixed locations as
pseudo ground-truths. 1×1 OCI means directly using the original
object-centric images. Results are reported on LVIS v0.5 val. We
can see that 2× 2 mosaic gives better performance on all classes.
The best result per column is in bold font.

APb APb
r APb

c APb
f

Faster R-CNN? 23.35 12.98 22.60 28.42
1× 1 OCI 24.27 16.97 23.29 28.42
3× 3 Mosaic 24.29 18.14 23.13 28.21
2× 2 Mosaic 24.48 18.76 23.26 28.29

with the normalization loss in [31].
Mosaicking is also beneficial for self-training. We first
study the vanilla self-training that directly learns object-
centric (without mosaicking) and scene-centric images
jointly. Specifically, we apply the pre-trained detector to
generate pseudo-labels on the object-centric images (D).
Next, the pre-trained detector is trained to jointly optimize
the losses on human labels from LVIS and pseudo labels on
object-centric images. We compare with and without image
mosaic in Table D: image mosaicking improves APb/APb

r

from 22.00/14.04 to 22.71/14.52, demonstrating the effec-
tiveness of mosaicking object-centric images to mitigate the
domain discrepancy between two types of images.
Self-training vs. our two-stage fine-tuning. To further
improve the performance of self-training, we apply “trusted
the calibrated detector + image class labels” (D‡) as the
pseudo-labeling method, which leads to a much higher de-
tection accuracy than “trusted the pre-trained detector” (D)
for our MOSAICOS (cf. Table 1 of the main paper and the
last row vs. the first row in Table D). With this pseudo-
labeling method, we see a notable gain against “trust the
pre-trained detector” (D) for self-training.

We further compare the self-training procedure that fine-
tunes the detector simultaneously with object-centric and
scene-centric images to our MOSAICOS with two-stage
fine-tuning (again in Table D). MOSAICOS outperforms
self-training (with either D or D‡) in most metrics, demon-
strating the strength of two-stage fine-tuning which first
learns with object-centric images and then scene-centric im-
ages. This two-stage pipeline is not only robust to noisy
pseudo scene-centric data but also able to tie the detector to
its final application domain with real scene-centric images.

E. Data Quality of Object-Centric Images
Our main results are based on the ImageNet dataset [5].

We included Google/Flickr images (Table 5 in the main
text) mainly to analyze the effect of data quality and com-
pare to [15]. As shown in Figure F, most Google images
searched by object names are object-centric, even for those
not ranked on the top. Following the experimental setup

Table D. Comparison to self-training. Mosaic: 3means 2×2
image mosaicking from different classes. P-GT: ways to gener-
ate pseudo-labels (D: trust the pre-trained detector, D‡: trust the
calibrated detector and image class label).

Mosaic P-GT APb APb
r APb

c APb
f

Faster R-CNN? – – 23.35 12.98 22.60 28.42

Self-training
7 D 22.00 14.04 20.41 27.18
3 D 22.71 14.52 21.41 27.61
3 D‡ 23.65 16.30 22.55 27.96

MOSAICOS
3 D 23.04 13.93 21.51 28.14
3 D‡ 24.93 19.31 23.51 28.95

in Table 5 of the main paper, we further experiment with
500 Google images per class: APb is improved from 24.45
to 24.63. For images that are less object-centric, LORE
can give better pseudo-labels than the fixed heuristic; our
two-stage fine-tuning is robust to noise. Moreover, there
are extensive works on de-noising web data that we can
leverage to further improve our scalability and applicability.
That being said, we neither focus on web images/crowd-
sourcing nor suggest that human efforts (e.g., ImageNet)
are not needed. Our claim is that rare objects that are hard
to collect from SCI are easier to collect from OCI, which
opens up a new way to tackle long-tailed object detection.

F. Comparison to Adversarial Training
We apply adversarial training (e.g., [6]) to jointly train

the detector with LVIS and pseudo scene-centric images.
Concretely, we train an additional domain classifier to dif-
ferentiate the LVIS images and pseudo scene-centric im-
ages, and incorporate a gradient reversal layer (GRL) [6]
to minimize the discrepancy between their features to over-
come the domain gap. We show comparisons in Table E.
Adversarial training outperforms naive joint (i.e., single-
stage) training, and MOSAICOS (with two-stage fine-tuning
using each source) surpasses adversarial training.

Table E. Comparison to adversarial training. Results are re-
ported on LVIS v0.5 validation set.

Mosaic APb APb
r APb

c APb
f

Single-stage 3 20.09 12.96 19.08 24.20

Adv. training
7 20.92 11.42 19.23 26.85
3 22.87 14.48 22.02 27.28

MOSAICOS
7 24.27 16.97 23.29 28.42
3 24.75 19.73 23.44 28.39

G. Implementation Details of MOSAICOS
G.1. Details on object detection

As mentioned in § 6.1 of the main paper, we use Faster
R-CNN [17] as our base detector and further extend the
training process with another 90K iterations and select the
checkpoint with the best APb as Faster R-CNN?. We use
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Figure F. Google Images for the most rare classes in LVIS. We show the top 5 retrieved images and images ranked around 500.

Faster R-CNN? as our main baseline to ensure that the im-
provement of MOSAICOS does not simply come from train-
ing (i.e., fine-tuning) with more epochs.

For MOSAICOS, we first fine-tune Faster R-CNN? with
pseudo scene-centric images, and then fine-tune it with the
LVIS training set again. Both stages are trained end-to-end
with stochastic gradient descent with all training losses in
Equation 1 of the main paper, using a mini-batch size of 16,
momentum of 0.9, weight decay of 10−4, and learning rate
of 2×10−4. Unlike other long-tailed methods [19, 20, 23]4,
there is no additional hyper-parameter in our framework.

G.2. Details on instance segmentation

Background on instance segmentation. We apply Mask
R-CNN [8], which adopts the two-stage network architec-
ture similar to Faster R-CNN [17], with an identical first
stage RPN. In the second stage, in addition to predicting the
class label and box offset, Mask R-CNN further outputs a
binary segmentation mask for each proposal. Formally, dur-
ing training, the entire Mask R-CNN is learned with four
loss terms

L = Lrpn + Lcls + Lreg + Lmask, (A)

where the RPN loss Lrpn, classification loss Lcls, and box
regression loss Lreg are identical to those defined in [17].
The mask loss Lmask is learned via an average binary cross-
entropy objective.
Multi-stage training for instance segmentation. We first
train a Mask R-CNN using labeled scene-centric images
from LVIS with instance segmentation annotations [7]. All
the fours loss terms in Equation A are optimized.

We then fine-tune the model using the pseudo scene-
centric images that are generated from object-centric im-
ages. We use these images (only with box pseudo-labels)
to fine-tune the model using Lcls, Lrpn, and Lreg. In other
words, we do not optimize Lmask. Any network parameters
that affect Lcls, Lrpn, and Lreg, especially those in the back-
bone feature network (except the batch-norm layers), can be
updated.

4Both EQL(v2) [19, 20] and Seesaw loss [23] introduce (multiple) ad-
ditional hyper-parameters.

Table F. Object detection on LVIS v0.5. We use ImageNet +
Google Images. MSCOCO: for pre-training. [16]: balanced loss.
Within each column, red/blue indicates the best/second best.

MSCOCO [16] APb APb
r APb

c APb
f

RFS [7] 23.35 12.98 22.60 28.42
EQL [20] 23.30 – – –
LST [10] 22.60 – – –

BaGS [12] 3 25.96 17.65 25.75 29.54
TFA [25] 24.40 16.90 24.30 27.70

MOSAICOS

25.01 20.25 23.89 28.32
3 26.28 17.37 26.13 30.02

3 26.83 21.00 26.31 29.81
3 3 28.06 19.11 28.23 31.41

After this stage, we fine-tune the whole network again
with labeled scene-centric images from LVIS, using all the
four loss terms in Equation A. The training procedure and
other implementation details for instance segmentation are
exactly the same as object detection in § G.1.

H. Experimental Results on LVIS v0.5

Due to space limitations, we only compared with state-
of-the-art methods in Table 3 and Table 7 of the main paper.
In this section, we provide detailed comparisons with more
previous works on LVIS v0.5.
Object detection on LVIS v0.5. There are not many papers
reporting detection results on LVIS. In Table F, we further
include EQL [20] and LST [10], together with BaGS [12]
and TFA [25], as the compared methods. MOSAICOS out-
performs all baselines except BaGS [12]. We note that,
BaGS is pre-trained on COCO [13] while MOSAICOS is
initialized from ResNet-50 that is pre-trained on ImageNet-
1K (ILSVRC). By using the COCO pre-trained backbone as
the initialization, MOSAICOS outperforms BaGS on nearly
all metrics. Moreover, when combined with [16], MO-
SAICOS can further boost the state-of-the-art performance.
Instance segmentation on LVIS v0.5. The comparison re-
sults on LVIS 0.5 instance segmentation are presented in
Table G, including the baseline models with RFS [7] for
re-sampling, EQL(v2) [19, 20] for re-weighting, LST [10]
for incremental learning, SimCal [24] and BaGS [12] for
de-coupled training, Forest R-CNN [27] for hierarchy clas-



Table G. Instance segmentation on LVIS v0.5. Our MOSAICOS
uses images from ImageNet and Google Images. + [16]: include
the balanced loss in the second stage fine-tuning. Within each col-
umn, red/blue indicates the best/second best.

AP APr APc APf

RFS [7] 24.38 15.98 23.96 28.27
EQL [20] 22.80 11.30 24.70 25.10
LST [10] 23.00 – – –

SimCal [24] 23.40 16.40 22.50 27.20
Forest RCNN [27] 25.60 18.30 26.40 27.60

BaGS [12] 26.25 17.97 26.91 28.74
BALMS [16] 27.00 19.60 28.90 27.50
EQL v2 [19] 27.10 18.60 27.60 29.90
MOSAICOS 26.26 19.63 26.60 28.49

MOSAICOS + [16] 27.86 20.44 28.82 29.62

sification, and BALMS [16] for a balanced softmax loss.
MOSAICOS can perform on a par with or even better
than the compared methods without any additional hyper-
parameter tuning like in [19, 20, 23]. By combined with
[16], MOSAICOS achieves the stat-of-the-art performance
of 27.86/20.44 AP/APr, showing the compatibility of MO-
SAICOS. We expect that MOSAICOS could be further im-
proved by incorporating other long-tailed learning strate-
gies [12, 16, 21, 23, 25].

I. Experimental Results on LVIS v1.0

I.1. Setup

Dataset statistics. We further evaluate MOSAICOS on
LVIS v1.0 [7]. The total dataset size has been expanded
to ∼160K images and ∼2M instance annotations. The total
number of categories has decreased slightly (from 1,230 to
1,203) due to a more stringent quality control. More specifi-
cally, LVIS v1.0 adds 52 new classes while drops 79 classes
from LVIS v0.5. The validation set has been expanded from
5K images to 20K images. Table I gives a summary of the
statistics of the two versions of LVIS dataset. We follow
the experimental setups of LVIS v0.5 to use category synset
ID [14] to search for the corresponding classes in ImageNet-
21K dataset [18]. In total, we collect 753, 700 object-centric
images. Table H shows the detailed statistics of the number
of overlapped classes in those datasets. We also search 100
images for each class via Google Images.
Our settings. For instance segmentation, we use Mask R-
CNN [8] with instance segmentation annotations. The train-
ing scheme is the same as that for Faster R-CNN in object
detection. Specifically, we follow the default training con-
figurations in [28] with 1x schedule5.

For the MOSAICOS training (cf. § G.2), we first fine-
tune the baseline Mask R-CNN for 90K iterations with

5EQL v2 [19] and Seesaw loss [23] use another implementation
from [2], which uses 2x schedule for training the models on LVIS v1.0.

pseudo scene-centric images using only box annotations.
Our pseudo scene-centric images are synthesized with 2×2
mosaic from random classes of ImageNet-21K and Google
images. We use the boxes with 6 fixed locations as pseudo
ground-truths. After that, We end-to-end fine-tune the entire
model for another 90K iterations using the LVIS training set
with all four losses. The network parameters of the mask
head are initialized by the baseline Mask RCNN model.
Both two fine-tuning steps are trained with stochastic gradi-
ent descent with a mini-batch size of 16, momentum of 0.9,
weight decay of 10−4, and learning rate of 2× 10−4.

I.2. Instance segmentation on LVIS v1.0

Table J shows detailed results on instance segmentation.
We mainly compare with Mask R-CNN and two recent pa-
pers [19, 23], which reported instance segmentation results
and re-implemented some other methods on LVIS v1.0. We
evaluate MOSAICOS with three different backbone mod-
els: ResNet-50 [9], ResNet-101 [9], and ResNeXt-101 [30]:
MOSAICOS consistently outperforms the Mask R-CNN
baseline especially for rare classes.

We note that, EQL v2 [19] and Seesaw loss [23] were im-
plemented by a different framework [2] and reported results
with a stronger 2x training schedule. Thus, the accuracy
gap between different methods may be partially affected by
these factors. This can be seen by comparing the three Mask
R-CNN results with ResNet-50 and the two Mask R-CNN
results with ResNet-101: there is a notable difference in
their accuracy. Specifically, the ones reported by [23] have
a much higher accuracy.

With the same ResNet-50 backbone and 1x schedule,
MOSAICOS achieves 24.49/18.30 AP/APr, better than
EQL v2 [19] (23.70/14.90), BaGS [12], and cRT [11]. With
the ResNet-101 backbone, MOSAICOS with 1x sched-
ule achieves 26.54 AP, outperforming both EQL [20] (2x
schedule, 26.20 AP) and BaGS [12] (2x schedule, 25.80
AP). We also show a detailed comparison to Seesaw
loss [23] in Table K. MOSAICOS demonstrates a compa-
rable performance gain against the Mask R-CNN baseline.

J. Qualitative Results
We show qualitative results on LVIS v0.5 object detec-

tion in Figure G and Figure H. We compare the ground
truth, the results of the baseline and of our method.

We observe that our method can accurately recognize
more objects from rare categories that may be overlooked
by the baseline detector. For example, as shown in Fig-
ure H, MOSAICOS correctly detects giant panda, score-
board, horse carriage, and diaper. They are all rare classes
and the baseline detector fails to make any correct detec-
tion (i.e., localization and classification) on them. More-
over, the results demonstrate that MOSAICOS is able to cor-
rect the prediction labels that were wrongly classified to fre-



Table H. Number of overlapped classes in LVIS and ImageNet. In LVIS and ImageNet, each category can be identifed by a unique
WordNet synset ID. We match LVIS classes to ImageNet ones and show the number of the overlapped classes. Specifically, we show #
LVIS classes / # overlapped to ImageNet-21K / # overlapped to ImageNet-1K (ILSVRC).

Version Split Frequent Common Rare Overall

v0.5
Train 315 / 253 / 85 461 / 387 / 96 454 / 385 / 71 1230 / 1025 / 252
Val 313 / 252 / 21 392 / 329 / 84 125 / 106 / 71 830 / 678 / 176

v1.0
Train 405 / 331 / 87 461 / 390 / 96 337 / 277 / 64 1203 / 998 / 247
Val 405 / 331 / 87 452 / 382 / 92 178 / 144 / 37 1035 / 857 / 216

Table I. Statistics of LVIS v0.5 and v1.0 datasets.
Version Type Train Val Test

v0.5
# Image 57,263 5,000 19,761
# Class 1,230 830 -
# Instance 693,958 50,763 -

v1.0
# Image 100,170 19,809 19,822
# Class 1,203 1,035 -
# Instance 1,270,141 244,707 -

Table J. Instance segmentation on LVIS v1.0. We list multiple
Mask R-CNN baselines whose accuracy are notably different due
to differences in implementation, which may affect the accuracy
of the corresponding proposed methods. MOSAICOS outperforms
Mask R-CNN and many other methods on most of the metrics.

Backbone Method AP APr APc APf

R-50

Mask RCNN [7]†1 22.59 12.31 21.30 28.55
Mask RCNN [7]?2 23.70 13.50 22.80 29.30
Mask RCNN [7]§1 22.20 11.50 21.20 28.00

cRT [11]§1 22.10 11.90 20.20 29.00
BaGS [12]§1 23.10 13.10 22.50 28.20

EQL v2 [19]§1 23.70 14.90 22.80 28.60
EQL v2 [19]§2 25.50 17.70 24.30 30.20
Seesaw [23]?2 26.40 19.60 26.10 29.80
MOSAICOS †1 24.49 18.30 23.00 28.87

R-101

Mask RCNN [7]†1 24.82 15.18 23.71 30.31
Mask RCNN [7]?2 25.50 16.60 24.50 30.60

EQL [20]?2 26.20 17.00 26.20 30.20
BaGS [12]?2 25.80 16.50 25.70 30.10

Seesaw [23]?2 28.10 20.00 28.00 31.90
MOSAICOS†1 26.77 20.79 25.76 30.53

X-101
Mask RCNN [7]†1 26.62 17.51 25.51 31.86

MOSAICOS†1 28.31 21.74 27.25 32.36
†: Our implementations with RFS [7].
?: Results reported in [23]. All models trained with RFS [7].
§: Results reported in [19].
1: 1x schedule. 2: 2x schedule.

quent classes without sacrificing the detection performance
on common and frequent classes. As shown in the second
row of Figure G, the baseline detector wrongly predicts fre-
quent class labels like bowl and knife with high confidence
score, while MOSAICOS suppresses them and successfully
predicts rare classes napkin and cappuccino.

One characteristic of LVIS is that the objects may not be
exhaustively annotated in each image. We find that MO-
SAICOS still detects those objects which are not labeled as
the ground truths. In the second and third row of Figure H,
the predictions on banner and horse are obviously correct
while LVIS doesn’t have annotations on them.
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