Supplementary materials for Multi-Scale Vision Long-
former: A New Vision Transformer for High-Resolution
Image Encoding

A. Settings
A.1. Model configurations

We listed the model configuration of all models used in
this paper in Table 8. We do not specify the attention mech-
anism here, because the model configuration is the same for
all attention mechanisms and the attention-specific parame-
ters are specified in Table 15.

Stagel Stage2 Stage3 Stage4
Model n,p,h,d | n,ph,d n,p,h,d n,p,h,d
Tiny 1,4,1,48| 1,2,3,96 | 9,2,3,192 | 1,2,6,384
Small 1,4396| 2,2,3,192| 8,2,6,384 | 1,2,12,768
Medium 1,4,396| 4,2,3,192| 16,2,6,384 | 1,2,12,768
Base 1,43,96| 8,2,3,192| 24,2,6,384 | 1,2,12,768
Tiny 1-10-1 1,8,3,96 10,2,3,192| 1,2,6,384
Tiny 2-9-1 2,8,3,96 9,2,3,192 | 1,2,6,384
Tiny 1-9-2 1,8,3,96 9,2,3,192 | 2,2,6,384
Tiny 2-8-2 2,8,3,96 8,2,3,192 | 2,2,6,384
Tiny 1-1-9-1 | 1,4,1,48| 1,2,3,96 | 9,2,3,192 | 1,2,6,384
Tiny 1-2-8-1 | 1,4,1,48| 2,2,3,96 | 823,192 | 1,2,6,384
Small 1-10-1 1,8,3,192 10,2,6,384 | 1,2,12,768
Small 2-9-1 2,8,3,192 9,2,6,384 | 1,2,12,768
Small 1-9-2 1,8,3,192 9,2,6,384 | 2,2,12,768
Small 2-8-2 2,8,3,192 8,2,6,384 | 2,2,12,768
Small 1-1-9-1| 1,4,3,96| 1,2,3,192| 9,2,6,384 | 1,2,12,768
Small 1-2-8-1 1,4,3,96‘ 2,23,192| 8,2,6,384 | 1,2,12,768

Table 8. Model architecture for multi-scale stacked ViTs. Archi-
tecture parameters for each E-ViT module E-ViT(a X n/p ; h, d):
number of attention blocks n, input patch size p, number of heads
h and hidden dimension d. See the meaning of these parameters
in Figure 1 (Bottom).

A.2. Experimental settings

Table 9 summarizes our training setups for our different
models.

For the ImageNet classification task, our setting mainly
follow that in DeiT [43]. For example, we do not use
dropout but use random path. We use all data augmentations
in DeiT [43], except that we apply Repeated Augmentation
only on Medium and Base models. When fine-tuning from
a ImageNet-21K pretrained checkpoint, we mainly follow
the practice of ViT [12], train on image size 384 x 384, use
SGD with momentum 0.9, use no weight decay, and use
only random cropping for data augmentation.

For COCO object detection/segmentation tasks, we fol-
low the standard “1x” and “3 x +MS” schedules. We only
change the optimizer from SGD to AdamW and search for

good initial learning rate and weight decay. For the “1x”
schedule, the input image scale is fixed to be (800, 1333)
for the min and max sizes, respectively. For the “3 x +MS”
schedule, the input image is randomly resized to have min
size in {640,672, 704, 736, 768,800}. We found that there
is obvious over-fitting in Training ViL-Medium and ViL-
Base models on COCO, mainly because that these two mod-
els are relatively large but they are only pretrained on Im-
ageNet. Therefore, we are taking the best checkpoint (one
epoch per checkpoint) along the training trajectory to report
the performance.

B. More experimental results

B.1. Ablation study on the architecture design of
multi-scale Vision Longformer

In this section, we present two ablation studies on the
model architecture of multi-scale Vision Longformer.
Ablation of the effects of LayerNorm and 2-D positional
embedding in the patch embedding. In Table 2, we show
that our flat model E-ViT(full x 12/16), which only dif-
fers from the standard ViT/DeiT model by an newly-added
LayerNorm after the patch embedding and the 2-D posi-
tional embedding, has better performance than the standard
ViT/DeiT model. In Table 10, we show that this better per-
formance comes from the newly-added LayerNorm.
Feature from the CLS token or from average pooling?
As shown in Table 11, for ViL models that has only one
attention block in the last stage (ViL 1-2-8-1), the average
pooled feature from all tokens works better than the feature
of the CLS token. However, when there are more than 2 at-
tention blocks in the last stage (ViL 1-1-8-2), the difference
between these two features disappears. The ViL 1-1-8-2
model has better performance than the Vil 1-2-8-1 model
because it has more trainable parameters.

B.2. A comprehensive comparison of different at-
tention mechanisms on ImageNet classifica-
tion

We compare different attention mechanisms with differ-
ent model sizes and architectures in Table 12 and Table 13.
In Table 12, we show their performance on ImageNet-1K
classification problem, measured by Top-1 accuracy. In Ta-
ble 13, we show their number of parameters and FLOPs.
We would like to comment that FLOPs is just a theoreti-
cal estimation of computation complexity, and it may not fit
well the space/time cost in practice.

B.3. Object detection and instance segmentation
with 1x schedule

We report the results for the standard 1x schedule in
Table 14, for both the RetinaNet and the Mask R-CNN

Model Dataset Epoch Base Lr LR decay Weightdecay Drop Path Batch size
MsViT-Tiny ImageNet 300 le-3 cosine 0.1 0.1 1024
MsViT-Small ImageNet 300 le-3 cosine 0.1 0.1 1024
MsViT-Meidum ImageNet 300 8e-4 cosine 0.1 0.1 1024
MsViT-Base ImageNet 150 8e-4 cosine 0.1 0.1 1024
MsViT-Meidum ImageNet-21k 90 Se-4 cosine 0.1 0.1 1024
MsViT-Base ImageNet-21k 90 Se-4 cosine 0.1 0.1 1024
MsViT-Meidum ImageNet-384 10 [2, 4]*e-2 cosine 0. 0.1 512
MsViT-Base ImageNet-384 10 [2, 4]*e-2 cosine 0. 0.1 512
Model Dataset iterations Base Lr LR decay Weightdecay Drop Path Batch size
MsViT-Tiny-1x COCO 60k-80k-90k le-4 multi-step 0.05 [0.05, 0.1] 16
MsViT-Small-1x COCO 60k-80k-90k le-4 multi-step 0.05 [0.1, 0.2] 16
MsViT-Meidum-D-1x COCO 60k-80k-90k le-4 multi-step 0.05 [0.2,0.3] 16
MsViT-Base-D-1x COCO 60k-80k-90k 8e-5 multi-step 0.05 [0.2,0.3] 16
MsViT-Tiny-3x+ms COCO 180k-240k-270k le-4 multi-step 0.05 [0.05, 0.1] 16
MsViT-Small-3x+ms COCO 180k-240k-270k le-4 multi-step 0.05 [0.1, 0.2] 16
MsViT-Meidum-D-3x+ms COCO 180k-240k-270k le-4 multi-step 0.05 [0.2,0.3] 16
MsViT-Base-D-3x+ms COCO 180k-240k-270k 8e-5 multi-step 0.05 [0.2,0.3] 16

Table 9. Hyperparameters for training. We use MsViT to represent the multi-scale vision transformers with different kinds of attention
mechanisms, including our Vision Longformer (ViL). For the experiments trained on COCO, MsViT is combined with the Retinanet or
Mask R-CNN. The training configs for Retinanet or Mask R-CNN are the same, and we still use MsViT for their unified short name.
We do not apply gradient clipping for all ImageNet classification training and apply gradient clipping at global norm 1 for COCO object
detection/segmentation. We use AdamW for all our experiments, except that we use SGD with momentum 0.9 for the ImageNet-384

fine-tuning experiments.

Tiny Small
Model CLS AvePool | CLS Ave Pool
DeiT/16[43] | 72.2 - 79.8 -
+Layernorm | 72.91 73.36 80.33 80.32
+2D Pos 73.21 73.09 80.44 80.75

Table 10. Ablation of the effects of LayerNorm and 2-D posi-
tional embedding in the patch embedding of the E-ViT module,
with ImageNet Top-1 accuracy. The improvement over DeiT [43]
comes from the added LayerNorm. The 2-D positional embedding
is mainly for saving parameters for high-resolution feature maps.
The column names of “CLS” and “Ave Pool” indicate how the im-
age feature is obtained for the linear classification head.

Tiny Small
Model CLS AvePool | CLS Ave Pool
VIL-1.28,1-APE| 7572 7598 | 81.65 81.99
ViL-1,1.82-APE| 76.18 76.25 | 8212 82.08

Table 11. For ViL models that has only one attention block in the
last stage (ViL 1-2-8-1), the average pooled feature from all tokens
works better than the feature of the CLS token. When there are
more than 2 attention blocks in the last stage (ViL 1-1-8-2), the
difference between these two features disappears.

pipelines. The results for the standard “3x+MS” schedule
are reported in Table 6 in the main paper.

Exact local attention with w=5 Sliding-chunk implementation with 2x2 chunks

Figure 4. The sliding-chunk implementation of Vision Long-
former. This implementation (Right) lets one token attends to
more tokens than the exact conv-like local attention (Left). Our
sliding-chunk implementation has the choice to be exactly the
same with the conv-like local attention (Left), by masking out to-
kens that should not be attended to. For chunks on the boundaries,
our implementation supports both no padding and cyclic padding.

C. Implementations and Efficiency of Vision
Longformer In Practice

There is a trivial implementation of the conv-like sliding
window attention, in which we compute the full quadratic
attention and then mask out non-neighbor tokens. This ap-
proach suffers from the quadratic complexity w.r.t. number
of tokens (quartic w.r.t. feature map size), and is impracti-
cal for real use, as shown by the blue curve in Figure 5. We

Flat Models | Tiny | Small
DeiT / 16 [43] 72.2 79.8
E-ViT(full x 12/16) 73.21 (CLS) / 73.09 (AVG) 80.44 (CLS) / 80.75 (AVG)
Multi-scale Tiny-3stage / 8 Tiny-4stage / 4 Small-3stage / 8 | Small-4stage / 4
Models 1-10-1 2-9-1 1-1-9-1 1-2-8-1 | 1-10-1 2-9-1 1-1-9-1 1-2-8-1
Full Attention 75.86 75.79 76.06 75.60 81.66 81.73 81.93* 81.91%
Vision Longformer | 75.63+025 75.88+00s | 76.18+012 75.984000 | 81.57 81.81 81.79 81.99
Linformer [46] 74.54 74.72 74.71 74.74 80.76 80.99 81.19 80.98
Partial Linformer 75.64 75.82 75.56 75.33 81.66 81.63 81.66 81.79
SRA/64 [47] 68.71 68.84 69.08 68.78 759 76.18 76.35 76.37
SRA/32 [47] 73.16 73.46 73.22 73.2 79.82 79.8 79.96 799
Partial SRA/32 75.17 75.8 75.2 75.26 81.63 81.59 81.62 81.61
Global 70.93 71.62 71.52 72.00 79.04 79.08 79.17 78.97
Partial Global 75.55 75.61 75.32 75.4 81.39 81.42 81.6 81.45
Performer 71.28 71.87 71.12 73.09 78.17 78.58 78.81 78.72
Partial Performer 75.65 75.74 75.34 75.93 81.59 81.86 81.72 81.72

Table 12. Overall comparison in ImageNet top-1 accuracy, with input size 224. Tiny-4stage / 4 means that the model has comparable size

with DeiT-Tiny, has 4 stages and uses patch size 4x4 in the initial pixel space. 1-2-8-1 means that the model contains 4 stages, each stage

has 1/2/8/1 MSA-FFEN blocks, respectively. *Partial* means that the last two stages, which contain most of the attention blocks, still use
full attention. Vision Longformer does not have *Partial* version because its window size is set as 15 (comparable with the ViT(DeiT)/16

feature map size 14), and its attention mechanism in the last two stages is equivalent to full attention. * indicates that the training batch

size is 256 (with learning rate linearly scaled down), different from all other experiments with batch size 1024 in this table.

Flat Models ‘

Tiny

Small

DeiT / 16 [43]
E-ViT(full x 12/16)

5.7 (M) parameters, 1.3 GFLOPs
5.7 (M) parameters, 1.3 GFLOPs

22.1 (M) parameters, 4.6 GFLOPs
22.1 (M) parameters, 4.6 GFLOPs

Multi-scale Tiny-3stage / 8 Tiny-4stage / 4 Small-3stage / 8 Small-4stage / 4

Models 1-10-1 2-9-1 1-1-9-1 1-2-8-1 1-10-1 2-9-1 1-1-9-1 1-2-8-1
Full Attention 7.1,1.35 68,145 | 6.7,2.29 64,239 | 27.6,4.84 26.3,5.05 | 26.0,6.74 24.6,6.95
Vision Longformer | 7.1,1.27 6.8,1.29 | 6.7,1.33 6.4,1.35 | 27.6,4.67 26.3,4.71 | 26.0,4.82 24.6,4.86
Linformer [46] 7.8,1.57 7.7,1.6 | 82,1.69 8.0,1.73 | 28.3,5.27 27.1,535 | 27.4,5.55 26.3,5.62
Partial Linformer 7.3,1.31 72,137 | 7.7,1.46 7.6,1.52 | 27.8,4.76 26.7,4.88 | 27.0,5.08 25.8,5.21
SRA/64 [47] 142,099 13.9,0.99| 13.8,1.0 13.5,1.0 | 55.9,3.92 54.6,3.92 | 54.3,3.97 52.9,3.97
SRA/32 [47] 8.7,1.09 84,1.09 | 83,1.1 8.0,1.1 | 34.1,4.23 32.7,4.23 | 32.5,4.28 31.1,4.28
Partial SRA/32 73,123 71,122 | 7.0,1.24 6.8,1.22 | 28.2,4.6 27.4,456 | 27.1,4.61 26.4,4.57
Global 72,169 69,1.7 | 6.8,1.75 6.5,1.76 | 27.8,6.65 26.4,6.67 | 26.2,6.76 24.9,6.78
Partial Global 72,16 69,162 | 68,1.68 65,1.7 | 27.8,6.07 26.4,6.14 | 26.2,6.23 24.9,6.3
Performer 7.3,1.81 7.0,1.86 | 69,199 6.6,2.05 | 27.8,5.75 26.5,5.87 | 26.2,6.14 24.8,6.26
Partial Performer 7.1,135 68,145 | 6.7,1.57 6.4,1.67 | 27.6,4.84 26.3,5.04 | 26.0,5.31 24.7,5.52

Table 13. Overall comparison in number of parameters (M) and GFLOPs, with input size 224. Tiny-4stage / 4 means that the model has
comparable size with DeiT-Tiny, has 4 stages and uses patch size 4x4 in the initial pixel space. 1-2-8-1 means that the model contains 4
stages, each stage has 1/2/8/1 MSA-FFN blocks, respectively. *Partial* means that the last two stages, which contain most of the attention
blocks, still use full attention. Vision Longformer does not have *Partial* version because its window size is set as 15 (comparable with

the ViT(DeiT)/16 feature map size 14), and its attention mechanism in the last two stages is equivalent to full attention.

Backbone #Params | FLOPs RetinaNet 1x schedule Mask R-CNN 1x schedule

M) (G) AP | APsy | APrs | APs | APy | AP | APY | APY | APY | AP™ | AP | APR
ResNet18 21.3/31.2 | 190/207 | 31.8 | 49.6 33.6 | 163 | 343 | 432 | 340 | 54.0 36.7 31.2 51.0 32.7
PVT-Tiny[47] 23.0/32.9 —/— 36.7 | 56.9 38.9 | 226 | 38.8 | 50.0 | 36.7 | 59.2 39.3 35.1 56.7 37.3
ViL-Tiny-RPB 16.6/26.9 | 183/199 | 40.8 | 61.3 436 | 26.7 | 449 | 53.6 | 414 | 63.5 45.0 38.1 60.3 40.8
ResNet50 37.7/44.2 | 239/260 | 36.3 | 55.3 38.6 | 19.3 | 40.0 | 48.8 | 38.0 | 58.6 | 414 344 55.1 36.7
PVT-Small[47] 34.2/44.1 | 226/245 | 404 | 61.3 43.0 | 25.0 | 429 | 557 | 404 | 629 | 438 37.8 60.1 40.3
ViL-Small-RPB 35.7/45.0 | 255/277 | 44.2 | 65.2 476 | 28.8 | 480 | 57.8 | 449 | 67.1 49.3 41.0 64.2 44.1
ResNet101 56.7/63.2 | 315/336 | 38.5 | 57.8 412 | 214 | 426 | 51.1 | 404 | 6l.1 44.2 36.4 57.7 38.8
ResNeXt101-32x4d | 56.4/62.8 | 319/340 | 39.9 | 59.6 | 427 | 223 | 442 | 525 | 419 | 62.5 459 37.5 59.4 40.2
PVT-Medium[47] 53.9/63.9 | 283/302 | 41.9 | 63.1 443 | 25.0 | 449 | 576 | 420 | 644 | 456 39.0 61.6 42.1
ViL-Medium-RPB 50.8/60.1 | 330/352 | 46.8 | 68.1 50.0 | 314 | 50.8 | 60.8 | 47.6 | 69.8 52.1 43.0 66.9 46.6
ResNeXt101-64x4d | 95.5/101.9 | 473/493 | 41.0 | 60.9 440 | 239 | 452 | 540 | 42.8 | 63.8 473 38.4 60.6 41.3
PVT-Large[47] 71.1/81.0 | 345/364 | 42.6 | 63.7 454 | 258 | 46.0 | 584 | 429 | 65.0 | 46.6 39.5 61.9 42.5
ViL-Base-RPB 66.7/76.1 | 421/439 | 47.8 | 69.2 | 514 | 324 | 523 | 61.8 | 48.6 | 70.5 53.4 43.6 67.6 47.1

Table 14. Object detection and instance segmentation performance on the COCO val2017. The numbers before and after *“/” at column
2 and 3 are the model size and complexity for RetinaNet and Mask R-CNN, respectively. The FLOPs (G) are measured at resolution
800 x 1333. “~” means data publicly unavailable. Our ViL-Tiny and ViL-Small models are pre-trained on ImageNet-1K, our ViL-Medium
and ViL-Base models are pre-trained on ImageNet-21k. ViL results are highlighted with gray background.

only use it to verify the correctness of our other implemen-
tations.
We have implemented Vision Longformer in three ways:

1. Using Pytorch’s unfold function. We have two sub-
versions: one using nn.functional.unfold (denoted as
“unfold/nn.F”) and the other using tensor.unfold (de-
noted as “unfold/tensor”). As shown in Figure 5, the
“unfold/tensor” version (red solid line) is more effi-
cient both in time and memory than the “unfold/nn.F”’
version (red dotted line). However, both of them are
even slower and use more memory than the full atten-
tion!

2. Using a customized CUDA kernel, denoted as
“cuda_kernel”. We make use of the TVM, like what
has done in Longformer [3], to write a customized
CUDA kernel for Vision Longformer. As shown in
Figure 5, the “cuda_kernel” (green line) achieves the
theoretical optimal memory usage. Its time complex-
ity is also reduced to linear w.r.t. number of tokens
(quadratic w.r.t. feature map size). However, since it’s
not making use of the highly optimized matrix multi-
plication libraries in CUDA, it’s speed is still slow in
practice.

3. Using a sliding chunk approach, illustrated in Fig-
ure 4. For this sliding chunk approach, we have two
subversions: one using Pytorch’s autograd to compute
backward step (denoted as “SCw/Autograd™) and the
other writing a customized torch.autograd.Function
with hand-written backward function (denoted as
“SCw/Handgrad”). Both sub versions of this sliding
chunk approach are fully implemented with Pytorch
functions and thus make use of highly optimized ma-

trix multiplication libraries in CUDA. As shown in
Figure 5, both of them are faster than the “cuda_kernel”
implementation.

In the sliding chunk approach, to achieve a conv-like lo-
cal attention mechanism with window size 2w + 1, we split
the feature map into chunks with size w x w. Each chunk
only attends to itself and its 8 neighbor chunks. The Pytorch
Autograd will save 9 copies of the feature map (9 nodes
in the computing graph) for automatic back-propagation,
which is not time/memory efficient. The “SCw/Handgrad”
version defines a customized torch.autograd.Function with
hand-written backward function, which greatly saves the
memory usage and also speeds up the algorithm, as shown
in Figure 5. We would like to point out that the memory us-
age of the “SCw/Handgrad” version is nearly optimal (very
close to that of the “cuda_kernel”). Similar speed-memory
trade-off with different implementations of local attention
mechanism has been observed in the 1-D Longformer [3],
too; see Figure 1 in [3]. We would like to point out that
Image Transformer [30] has an implementation of of 2-D
conv-like local attention mechanism, which is similar to our
“SCw/Autograd” version. The Image Transformer [30] ap-
plies it to the image generation task.

This sliding-chunk implementation (Figure 4 Right) lets
one token attends to more tokens than the exact conv-like
local attention (Figure 4 Left). Our sliding-chunk imple-
mentation has the choice to be

1. exactly the same with the conv-like local attention
(Left), by masking out tokens that should not be at-
tended to,

2. sliding chunk without padding, in which the chunks on
the boundary have less chunks to attend to,

—e— full

2.0

—— unfold/tensor
--<%-- unfold/nn.F
—— cuda_kernel
15| --+-- SCw/Autograd
—~— SCw/Handgrad

1.0

forward-backward time (S)

0.0

50 100 150 200 250 300
feature map size n (n*n is the num of tokens)

—e— full *
—— unfold/tensor /
--+-- unfold/nn.F /
—+— cuda_kernel /
201 ™ SCw/Autograd J
—— SCw/Handgrad I,’{

25

15

10

forward-backward memory (Gb)

50 100 150 200 250 300
feature map size n (n*n is the num of tokens)
Figure 5. Compare of running time (including forward and back-
ward) and memory usage of different implementations of the conv-
like attention in Vision Longformer. All of these implementations
shown in the figures are mathematically equivalent, doing the ex-
act conv-like sliding window attention with window size 17.

3. sliding chunk with cyclic padding, in which the chunks
on the boundary still attend to 9 chunks with cyclic
padded chunks.

Since these three masking methods only differ by the at-
tention masks to mask out invalid tokens, their speed and
memory usage are nearly the same, as shown in Figure 6.
For ImageNet classification, we observe no obvious differ-

Q
~

—e— Exact sliding window 4
—=— Sliding chunk without padding f
—— Sliding chunk with cyclic padding

forward-backward time (S)
o o o o o o
= o w » n o

©
o

50 100 150 200 250 300
feature map size n (n*n is the num of tokens)

—e— Exact sliding window e
—— Sliding chunk without padding
—+— Sliding chunk with cyclic padding

= =
N S

=
(=]

forward-backward memory (Gb)

50 100 150 200 250 300
feature map size n (n*n is the num of tokens)

Figure 6. Compare of three masking methods of our
“SCw/Handgrad” implementation of conv-like local atten-
tion: exact conv-like sliding window attention, sliding chunk
attention without padding for boundary chunks, and sliding chunk
attention with cyclic padding for boundary chunks. The are
nearly the same in terms of running time (including forward and
backward) and memory usage. The window size is 17 and thus
chunk size is 8.

ence in topl accuracy between “exact sliding window” and
“sliding chunk without padding”, while “sliding chunk with
cyclic padding” performs slightly worse most of the time.
For object detection, we observe that “sliding chunk without
padding” performs consistently better than “exact sliding

—e— window size 9
1.0y —— window size 13
—— window size 17
. ——— window size 25
©no0.8
(8]
£
o
5 0.6
=
4
(@]
©
o]
- 0.4
©
s
o
0.2
0.0

50 100 150 200 250 300
feature map size n (n*n is the num of tokens)

—e— window size 9
—— window size 13

—20] —— window size 17
0 . .
o —+— window size 25
-
=
o 15
S
=
©
g
< 10
(v}
Q
B
[0
s 5
e

0

50 100 150 200 250 300
feature map size n (n*n is the num of tokens)

Figure 7. Running time (including forward and backward) and
memory usage of our “SCw/Handgrad” implementation of conv-
like local attention (sliding chunk attention without padding mode)
with different window sizes. The speed is not sensitive to the win-
dow size for small window sizes (< 17) and the memory usage
monotonically increases.

window”, as shown in Figure 8. Therefore, we make “slid-
ing chunk without padding” as the default making method
for Vision Longformer, although it sacrifices some transla-
tional invariance compared with “exact sliding window”.

In Figure 7, we show the running time (includ-
ing forward and backward) and memory usage of our

45.0 —e— exact:0
----- e exact:1 41.0
44.5
40.5
44.0
% 43.5 40.0%
5 &
o ()
©43.0 v
39.5
42.5
39.0
42.0
; —— exact:0
e o exact:l |3g 5
41.5

2 4 6 8 10
(window_size - 1) / 2
Figure 8. “Sliding chunk without padding” performs consistently
better than “exact sliding window” for object detection with Mask
R-CNN. All use the same ImageNetlK pre-trained checkpoint
(ViL-Small-RPB in Table 4).

“SCw/Handgrad” implementation of conv-like local atten-
tion (sliding chunk attention without padding mode) with
different window sizes. We can see that the speed is not
sensitive to the window size for small window sizes (< 17)
and the memory usage monotonically increases.

Finally, both the “unfold/nn.F” and the “cuda_kernel”
implementations support dilated conv-like attention. The
customized CUDA kernel is even more flexible to support
different dilations for different heads. The sliding-chunk
implementation does not support this dilated conv-like at-
tention. In this paper, we always use the sliding-chunk im-
plementation due to its superior speed and nearly optimal
memory complexity.

In Figure 5, 6 and 7, the evaluation is performed on
a single multi-head self-attention module (MSA) with the
conv-like local attention mechanism, instead of on the full
multi-scale Vision Longformer. With this evaluation, we
can clearly see the difference among different implementa-
tions of the conv-like local attention mechanism.

D. Random-shifting strategy to improve train-
ing efficiency

We propose the random-shifting training strategy for Vi-
sion Longformer, to further accelerate the training speed of
Vision Longformer. More specifically, instead of attending
to all 8 neighbor patches, one patch can only attend to itself
and one random neighbor patch during training. To achieve
this, we define 10 modes of the sliding-chunk local atten-
tion:

Mode i (1 < i < 8): attend to its own patch
and the i’th neighbor patch

Figure 9. Illustration of the 8 modes in the random-shifting train-
ing strategy. For mode ¢ (1 <= % <= 8), the query chunk (dark
brown) attends to itself and the ¢’th neighbor chunk.
valid_top1 valid_top1

80 — 80

By T 60

40 40

20 20

0 0

0 50 100 150 200 250 300 0 20 40 60 80 100
Epoch Walltime

—— Mode -1: attn within chunks — Random-shift and switch at 75%

Random-shift and switch at 87.5% Sliding-chunk attention 8 neighbor chunks

Figure 10. The random-shifting strategy does not harm the model
performance (Left), an accelerates the Vision Longformer train-
ing significantly (Right). When zooming in, the performance
of “random-shift and switch at 75%” is slightly better than the
“Sliding-chunk attention with 8 neighbor chunks”.

* 0 (default): attend to itself and all 8 neighbor chunks,
e -1: only attend to itself chunk,

* i(l <=1 <= 8): attend to itself chunk and the i’th
neighbor chunk.

The ordering of the 8 neighbor patches is visualized in Fig-
ure 9. During training, we can randomly sample one mode
from 1 to 8 and perform the corresponding random-shifting
attention. We switch from the random-shifting mode to the
default 8-neighbor mode after ©% training iterations, and
this switch time 2% is a hyper-parameter with default value
75%. This switch, can be seen as fine-tuning, is necessary to
mitigate the difference of model’s behavior during training
and inference. As shown in Figure 10, this random-shifting
training strategy accelerates the Vision Longformer train-
ing significantly, while not harming the final model perfor-
mance.

E. Other Efficient Attention Mechanisms uti-
lized in this work

In this paper, we compare Vision Longformer with the
following alternative choices of efficient attention methods.

Pure global memory (¢ = global). In Vision Long-
former, see Figure 2 (Left), if we remove the local-to-local
attention, then we obtain the pure global memory attention
mechanism (called Global Attention hereafter). Its memory
complexity is O(ng(ng + n;)), which is also linear w.r.t.
n;. However, for this pure global memory attention, ng
has to be much larger than 1. In practice, we set differ-
ent numbers of global tokens for different stages, as shown
in Table 15, with more global tokens in the first 2 stages
and less in the last 2 stages. This setting makes the mem-
ory/computation complexity comparable with other atten-
tion mechanisms under the same model size.

Linformer[46] (¢ = LIN) projects the n; x d dimensional
keys and values to K x d dimensions using additional pro-
jection layers, where K < n;. Then the n; queries only
attend to these projected K key-value pairs. The memory
complexity of Linformer is O(K n;). We gradually increase
K (by 2 each time) and its performance gets nearly satu-
rated at 256. Therefore, X = 256 is our choice for this
Linformer attention, which turns out to be the same with
the recommended value. Notice that Linformer’s projection
layer (of dimension K X n;) is specific to the current n;, and
cannot be transferred to higher-resolution tasks that have a
different n;. It is possible to transfer Linformer’s weight
by resizing feature maps of a different size to the original
feature map size that Linformer is trained with and then ap-
plying the Linformer’s projection. We do not explore this
choice in this work.

Spatial Reduction Attention (SRA) [47] (¢« = SRA) is
similar to Linformer, but uses a convolution layer with ker-
nel size R and stride R to project the key-value pairs, hence
resulting in n;/ R? compressed key-value pairs. Therefore,
The memory complexity of SRA is O(n?/R?), which is
still quadratic w.r.t. n; but with a much smaller constant
1/R?. When transferring the ImageNet-pretrained SRA-
models to high-resolution tasks, SRA still suffers from the
quartic computation/memory blow-up w.r.t. the feature map
resolution. Pyramid Vision Transformer [47] uses this SRA
to build multi-scale vision transformer backbones, with dif-
ferent spatial reduction ratios (R; = 8, Ry = 4,Rs =
2, Ry = 1) for each stage. With this PVT’s setting, the
key and value feature maps at all stages are essentially with
resolution 3% X % This choice is able to scale up to image
resolution 600 x 1000, but the memory usage is much larger

than ResNet counterparts for 800 x 1333.

In this paper, we benchmarked the performance of
SRA/32 with SR ratios Ry = 8, Ry = 4,R3 =2,Ry =1
(same as PVT [47]) and SRA/64 with SR ratios Ry =
16, Ry = 8, Ry = 4, R4 = 2 (two times more downsizing
from that in PVT [47]), as shown in Table 15. The SRA/64
setting makes the memory usage comparable with other ef-
ficient attention mechanisms under the same model size, but
introduces more parameters due to doubling the kernel size

of the convolutional projection layer.

Performer [10] (¢« = performer) uses random kernel ap-
proximations to approximate the Softmax computation in
MSA, and achieves a linear computation/memory complex-
ity with respect to n; and the number of random features
K. We use the default K = 256 orthogonal random fea-
tures (OR) for Performer. The memory/space complexity
of performer is O(Kd + n;d + Kn;) while its computa-
tion/time complexity is O(Kn;d). For the time complexity,
we ignore the complexity of generating the orthogonal ran-
dom features, which in practice cannot be ignored during
training. We refer to Section B.3 in [10] for a detailed dis-
cussion of theoretical computation/memory complexity of
Performer.

One important technique in training Performer is to re-
draw the random features during training. In our Ima-
geNet classification training, we adopt a heuristic adap-
tive redrawing schedule: redraw every 1 4 5T iterations
in Epoch T' (T" = 0,1,...,299). In our COCO object
detection/segmentation training, the Performer is initial-
ized from ImageNet pretrained checkpoint and thus there
is no need to redraw very frequently in the initial training
stage.Therefore, we redraw the random features every 1000
iterations in COCO object detection/segmentation training.

Model ‘ Stagel ‘ Stage2 ‘ Stage3 ‘ Stage4
Window size w
ViL-3stage 15 15 15
ViL-4stage 15 15 15 15
ViL-4stage (384) 13 17 25 25
Number of global tokens n,
Global-3stage 256 64 16
Global-4stage 256 ‘ 256 64 16
Projection Dimension K
Linformer-3stage 256 256 256
Linformer-4stage| 256 | 256 | 256 256
Spatial reduction ratio R
SRA/64-3stage 8 4 2
SRA/64-4stage 16 | 8 4 2
SRA/32-3stage 4 2 1
SRA/32-4stage 8 | 4 2 1
Number of orthogonal random features K
Performer-3stage 256 256 256
Performer-4stage| 256 ‘ 256 256 256

Table 15. Attention mechanism specific hyper-parameters. See
Appendix E for the details of these attention mechanisms.

F. Visualization of DeiT’s attention maps to
validate the inductive bias in Vision Long-
former

We visualize the attention maps from DeiT’s pre-
trained models to argue that the “local attention + global
memory” mechanism in Vision Longformer is a rea-
sonable inductive bias for vision transformers. More
specifically, we take the pretrained DeiT-Tiny model from
https://dl.fbaipublicfiles.com/deit/deit_tiny _patch16_224-
al311bcf.pth, infer it on images from ImageNet validation
set, and display its attention maps of the first attention
block in Figure 11, 12 and 13, for head 0, head 1 and head
2, respectively.

In Figure 11, the attention map of head 0 is just like the
2-D convolution, focusing on neighboring patches. There
are also relative large weights on the CLS token. In Fig-
ure 13, the attention map of head O is just like the “global
memory” mechanism, with every local token attends to the
global CLS token. Each local token also attends to itself,
like “local attention” with window size 1. In Figure 12, the
attention map of head 1 seems to be global, with large atten-
tion scores on visually similar patches (i.e., the dog’s white
fur, the gray wall).

These three attention patterns for these three heads are
consistent for different images. For other DeiT pretrained
models (like DeiT-Small and DeiT-Base), their attention
maps in the first attention block can also be classified into
these three attention patterns. Longformer exactly captures
the “local attention” and the “global memory” patterns,
and may introduce some information loss for the “global-
similarity” pattern. In comparison with the full attention,
the Vision Longformer attention does not lead to any accu-
racy drop in low-resolution ImageNet classification prob-
lem (Table 2) and leads to small accuracy drop in high-
resolution Object Detection/Segmentation tasks (Table 7).

100 150 200

Figure 11. Attention map of DeiT-Tiny at Block 0, head 0. This head’s attention map has exactly the ”local attention + global memory”
pattern in Vision Longformer, with more emphasis on the "local attention”. The (4, j) subplot shows the attention map of the local token
(2%1,2* j) as query. Each attention map A is a matrix of size 15 x 14, where A[1 : 15,0 : 14] is the attention scores to the 14 x 14 local
tokens and A[0, 13] (top-right corner) shows the attention score to the CLS token. A[0, 0 : 13] are zeros.

150 200

Figure 12. DeiT-Tiny: Block 0, head 1. This head’s attention map seems to be global, with large attention scores on visually similar patches
(i.e., the dog’s white fur, the gray wall). The (i, j) subplot shows the attention map of the local token (2 * ¢, 2 * j) as query. Each attention
map A is a matrix of size 15 x 14, where A[1 : 15,0 : 14] is the attention scores to the 14 x 14 local tokens and A[0, 13] (top-right corner)

shows the attention score to the CLS token. A[0, 0 : 13] are zeros.

100 150 200

Figure 13. DeiT-Tiny: Block 0, head 2. This head’s attention map has exactly the “local attention + global memory” pattern in Vision

~

Longformer, with more emphasis on the “global memory”. The (i, j) subplot shows the attention map of the local token (2 * i,2 * j

query. Each attention map A is a matrix of size 15 x 14, where A[1 : 15,0 : 14] is the attention scores to the 14 x 14 local tokens and

A0, 13] (top-right corner) shows the attention score to the CLS token. A[0, 0 : 13] are zeros.

