
Supplemental Material for Perturbed Self-Distillation

1. Overview
In this document, we start with more details of the train-

ing setup. Then we analyze the role of the GCN in the
framework. Moreover, we give the per-class scores of
Semantic3D[5] and ScanNet-v2 [4]. Finally, we present
the visualization results evaluated on Semantic3D [5] and
ScanNet-v2 [4] datasets.

1.1. Training Setup

Weakly setting. Inspired by the previous work [13] on
weakly supervised point cloud setting. We create weakly
supervised dataset by randomly annotating a tiny fraction
points in a category for each original point cloud. Specif-
ically, we set up two weakly supervised training methods:
1pt and 1%. At 1pt setting, we annotate one point for each
category for each point cloud sample. For example, there
are only 3 categories in a point cloud, and only 3 points
are annotated with ground truth. Intuitively, our 1% setting
means that 1% of the points are labeled for each category.
These labeled points will not change during the training.

You may define this learning style as semi-supervised
learning. From the perspective of point classification, this
problem can be regarded as semi-supervised learning. At
the semantic level, we only annotate some points for each
semantic category which is a form of weak supervision (in-
complete supervision). In [15], incomplete supervision is
defined as a kind of weak supervision. In addition, Xu [13]
also defines incomplete supervision as a weakly-supervised
task. Therefore, we follow the definition in our paper.

Training config. Here we have supplemented the exper-
imental details of the main paper. Our network training is
conducted on a single RTX Titan GPU with 24 GB memory.
The batch size is kept fixed to 4 in all datasets. The neigh-
borhood is set to K = 16 for backbone and GCNs. Our net-
work for all datasets takes input point clouds of size 40960
points.

1.2. Experiment Results

The importance of the topological relationship. In or-
der to verify the importance of the topological relationship,
we replace the GCN layers in the context-aware module
with MLP layers, and presente the comparison results un-
der different settings in the Figure 1. It can be seen that us-
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Figure 1. The comparison of GCN and MLP on Area-5 of S3DIS
[1] at different settings.

ing GCN can greatly improve the performance of segmen-
tation. And the less the labeled points, the more obvious the
improvement is. The results also demonstrate that the topo-
logical relationship is very important for weakly supervised
semantic segmentation tasks.

Evaluation on Semantic3D. We conduct the quantita-
tive evaluations on Semantic3D (reduced-8) [5] and list the
per-class scores in Table 1. Mean Intersection-over-Union
(mIoU) and Overall Accuracy (OA) of all classes are used
as the standard metrics. We compared some full supervised
methods published in recent years such as SnapNet [3],
SEGCloud [10], ShellNet [14], KPConv [11], RandLA-Net
[6], and PointGCR [8]. At 1% setting, PSD achieves 75.8%
and 94.3% in terms of both mIoU and OA, which are the
comparable performance to the fully-supervised methods.
Compared with the fully supervised RandLA-Net, our PSD
is 1.6% and 0.5% lower than RandLA-Net in mIoU and
OA, respectively. But, we achieve the best performance in
the category of “man-made terrain” (man-made.) and “high
vegetation” (high veg.). Overall, the results show that PSD
has a more reliable performance on the outdoor dataset.

Evaluation on ScanNet-v2 We present the segmentation
performance of per category on the ScanNet-v2 dataset [4]
and choose the weakly supervised setting of 1% for com-
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SnapNet (’17)[3] 59.1 88.6 82.0 77.3 79.7 22.9 91.1 18.4 37.3 64.4
SEGCloud (’17)[10] 61.3 88.1 83.9 66.0 86.0 40.5 91.1 30.9 27.5 64.3
ShellNet (’19)[14] 69.3 93.2 96.3 90.4 83.9 41.0 94.2 34.7 43.9 70.2
KPConv (’19)[11] 74.6 92.9 90.9 82.2 84.2 47.9 94.9 40.0 77.3 79.7

RandLA-Net (’20)[6] 77.4 94.8 95.6 91.4 86.6 51.5 95.7 51.5 69.8 76.8
PointGCR (’20)[8] 69.5 92.1 93.8 80.0 64.4 66.4 93.2 39.2 34.3 85.3

Weakly ours (1%) 75.8 94.3 97.1 91.0 86.7 48.1 95.1 46.5 63.2 79.0

Table 1. Quantitative results of per class on Semantic3D (reduced-8) [5]. (mIoU %)

mIoU bath-
tub

bed book-
shelf

cabinet chair counter curtain desk door floor

Fully

PointNet++ (’17)[9] 33.9 58.4 47.8 45.8 25.6 36.0 25.0 24.7 27.8 26.1 67.7
PCNN (‘18)[2] 49.8 55.9 64.4 56.0 42.0 71.1 22.9 41.4 43.6 35.2 94.1

SegGCN (’20)[7] 58.9 83.3 73.1 53.9 51.4 78.9 44.8 46.7 57.3 48.4 93.6
PointConv (’19)[12] 66.6 78.1 75.9 69.9 64.4 82.2 47.5 77.9 56.4 50.4 95.3
KP-FCNN (’19)[11] 68.4 84.7 75.8 78.4 64.7 81.4 47.3 77.2 60.5 59.4 93.5

Weakly baseline (1%) 51.3 52.6 61.8 63.0 33.7 78.8 38.8 41.9 47.9 30.7 91.2
ours (1%) 54.7 57.1 67.8 65.9 46.512.8↑77.8 38.8 52.810.9↑49.2 30.4 93.3

other-
furniture

picture refrig-
erator

shower-
curtain

sink sofa table toilet wall window

Fully

PointNet++ (’17)[9] 18.3 11.7 21.2 14.5 36.4 34.6 23.2 54.8 52.3 25.2
PCNN (‘18)[2] 32.4 15.5 23.8 38.7 49.3 52.9 50.9 81.3 75.1 50.4
SegGCN (’20)[7] 39.6 6.1 50.1 50.7 59.4 70.0 56.3 87.4 77.1 49.3
PointConv (’19)[12] 42.8 20.3 58.6 75.4 66.1 75.3 58.8 90.2 81.3 64.2
KP-FCNN (’19)[11] 45.0 18.1 58.7 80.5 69.0 78.5 61.4 88.2 81.9 63.2

Weakly baseline (1%) 40.3 26.4 45.2 29.9 42.9 64.7 53.7 72.2 61.7 51.4
ours (1%) 38.7 30.7 43.1 38.28.3↑ 52.69.7↑ 66.9 57.2 71.6 60.9 50.6

Table 2. Quantitative results of different approaches on ScanNet-v2 semantic label prediction [4]. (mIoU %)

parison. From Table 2. It can be seen that our PSD achieves
54.7% mIoU and 3.4% improvements against baseline. We
also achieve the performance close to the fully supervised
method SegGCN [7]. This shows that our method is ef-
fective for weakly supervised point cloud semantic seg-
mentation. Moreover, we highlight the improvement of
PSD relative to baseline in some categories with red su-
perscripts (x↑). For the four categories: “cabinet”, “cur-
tain”, “shower-curtain”, and “sink”, PSD achieves the gains
of 12.8%, 10.9%, 8.3%, and 9.7% against baseline, respec-
tively. These categories are easily confused each other or
confused with other categories. While PSD can greatly im-
prove the performance of these categories. The results show
that our method has a better generalization.

1.3. Visualization of Results

Qualitative results on Semantic3D. Figure 2 shows the
visualization results on the test set of Semantic3D. Since

there is no public ground truth, we show the original point
cloud at the left column and our segmentation results at
right column. In general, it can be seen that PSD achieves
good qualitative segmentation results at 1% setting. Our
method can also make more accurate predictions for some
categories ( e.g., “hard scape”, “high vegetation” and “car”)
with a small number of points.

Qualitative results on ScanNet. In order to further
show the effectiveness of PSD with fewer labels, we add
experiments at the 0.1% setting and give more qualitative
results. In Figure 3, we show the original point clouds, the
segmentation results at the 1% and 0.1% settings from left
to right on ScanNet-v2 [4], respectively. Whether it is at
1% or 0.1% setting, PSD can achieve good segmentation
results for most categories. At the 1% setting, the segmen-
tation precision of small corners and boundaries, is further
improved.
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Figure 2. The visualization results on Semantic3D at the 1% setting.
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