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This Supplementary Material provides additional details
of our approach and more experimental results that were not
included in the main manuscript due to space constraints.
In Section S1, we provide more details of our experiments
and the implementation of our approach. In Sections S2
and S3, we give the descriptions of the datasets and evalu-
ation metrics used in our experiments. Finally, we include
more quantitative and qualitative results in Section S4. We
also make available the code and video results at the project
page https://hongwenzhang.github.io/pymaf.

S1. More Experimental Details

Our network is trained with the Adam [8] optimizer and
batch size of 64. The learning rate is set to 5e−5 without
learning rate decay during training. Similar to SPIN [9], our
network is first trained on Human3.6M for 60 epochs and
then on the mixture of both 2D and 3D datasets for another
60 epochs.

The parameter regressors of PyMAF have the same de-
sign with that of HMR [6] except for their slightly different
input and output dimensions. Specifically, a regressor con-
sists of two fully-connected layers each with 1024 hidden
neurons and dropout added in between, followed by a final
layer at the end with 157-dimension output, corresponding
to the residual of shape and pose parameters. The regressors
in our network adopt the continuous representation [20] for
3D rotations in the pose parameters θ. During the extraction
of mesh-aligned features, the dimension of point-wise fea-
tures is reduced from Cs (i.e., 256) to 5, where a three-layer
MLP consisting of two hidden layers with neuron numbers
of (128, 64) is used. The feature pyramid of PyMAF is
generated by three deconvolution layers. The deconvolu-
tions are not compulsory but help to produce better features
maps. In our experiments, using the feature maps in the ear-
lier layers is also feasible but inferior to our final solution.

*: Equal contribution.

Runtime. The PyTorch implementation of PyMAF takes
about 30 ms to process one sample on the machine with a
single 2080 Ti GPU. The proposed mesh alignment feed-
back loop takes about 6 ms for each iteration, including the
time of generating new feature maps via deconvolution, pro-
jecting the mesh on image planes, the extraction of mesh-
aligned features via bilinear sampling and MLPs, and the
prediction of parameter updates by the regressor. For each
iteration, compared to the feedback loop in HMR [6] or
SPIN [9], PyMAF introduces additional runtime in the gen-
eration of feature maps, the current SMPL meshes, and the
mesh-aligned features, which accounts for 0.3 ms, 4 ms, and
1.2 ms respectively. We can see that the generation of the
feature pyramid and mesh-aligned features is quite efficient,
and the main runtime overhead comes from the SMPL mesh
generation given the current parameters. In practice, we can
speed up this process by using a down-sampled version of
SMPL to generate the mesh with 431 vertices directly. Note
that the prediction of dense correspondences and the auxil-
iary supervision in the pipeline are needed for training only,
which accounts for additional 15% runtime.

S2. Datasets
Following the protocols of previous work [6, 9], we train

our network on several datasets with 3D or 2D annotations,
including Human3.6M [3], MPI-INF-3DHP [13], LSP [4],
LSP-Extended [5], MPII [1], COCO [11]. For the last five
datasets, we also incorporate the SMPL parameters fitted in
[2, 9] as pseudo groud-truth annotations for training. Here,
we provide more descriptions of the datasets to supplement
the main manuscript.

3DPW [17] is captured in challenging outdoor scenes
with IMU-equipped actors under various activities. This
dataset provides accurate shape and pose ground truth an-
notations. Following the protocol of previous work [7, 9],
we do not use its data for training but only perform evalua-
tions on its test set.
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Human3.6M [3] is commonly used as the benchmark
dataset for 3D human pose estimation, consisting of 3.6
million video frames captured in the controlled environ-
ment. The ground truth SMPL parameters in Human3.6M
are generated by applying MoSh [12] to the sparse 3D Mo-
Cap marker data, as done in Kanazawa et al. [6]. It is com-
mon protocols [14, 15, 6] to use five subjects (S1, S5, S6,
S7, S8) for training and two subjects (S9, S11) for eval-
uation. The original videos are also down-sampled from
50 fps to 10 fps to remove redundant frames, resulting in
312,188 frames for training and 26,859 frames for evalua-
tion.

MPI-INF-3DHP [13] is a recently introduced 3D hu-
man pose dataset covering more actor subjects and poses
than Human3.6M. The images of this dataset were collected
under both indoor and outdoor scenes, and the 3D annota-
tions were captured by a multi-camera marker-less MoCap
system. Hence, there are some noise in the 3D ground truth
annotations.

LSP-Extended [5] is a 2D human pose benchmark
dataset, containing person images with challenging poses.
There are 14 visible 2D keypoint locations annotated for
each image and 9,428 samples used for training.

LSP [4] is a standard benchmark dataset for 2D human
pose estimation. In our experiments, we will employ its test
set for silhouette/parts segmentation evaluation, where the
annotations come from Lassner et al. [10]. There are 1,000
samples used for evaluation.

MPII [1] is a standard benchmark for 2D human pose es-
timation. There are 25,000 images collected from YouTube
videos covering a wide range of activities. We discard those
images without complete keypoint annotations, producing
14,810 samples for training.

COCO [11] contains a large scale of person images
labeled with 17 keypoints. In our experiments, we only
use those persons annotated with at least 12 keypoints, re-
sulting in 28,344 samples for training. Since this dataset
do not contain ground-truth meshes, we conduct quantita-
tive evaluation on the 2D keypoint localization task using
its validation set, which consists of 50,197 samples. Fol-
lowing [18], we crop input images using the ground-truth
bounding boxes.

S3. Evaluation Metrics
In the main manuscript, we report results of our approach

in a variety of evaluation metrics for quantitative compar-
isons with the state of the art, where all metrics are com-
puted in the same way as previous work [6, 15, 9] in the
literature.

To quantitatively evaluate the 3D human reconstruc-
tion and pose estimation performance on 3DPW and Hu-
man3.6M, PVE, MPJPE, and PA-MPJPE are adopted as the
evaluation metrics in Table 1 of the main manuscript. They

(a) PA-MPJPE: 26.9, MPJPE: 74.3 (b) PA-MPJPE: 27.7, MPJPE: 43.4

Figure S1: Examples of two reconstruction results. (a) A re-
construction result with a lower PA-MPJPE value but worse
mesh-image alignment. (b) A reconstruction result with a
higher PA-MPJPE value but better mesh-image alignment.

are all reported in millimeters (mm) by default. Among
these three metrics, PVE denotes the mean Per-vertex Er-
ror defined as the average point-to-point Euclidean distance
between the predicted mesh vertices and the ground truth
mesh vertices. MPJPE denotes the Mean Per Joint Position
Error, and PA-MPJPE denotes MPJPE after rigid alignment
of the prediction with ground truth using Procrustes Analy-
sis. Note that the metric PA-MPJPE can not fully reveal the
mesh-image alignment performance since it is calculated as
MPJPE after rigid alignment. As depicted in Fig. S1, a re-
construction result with a lower PA-MPJPE value can have
a higher MPJPE value and worse alignment between the re-
projected mesh and image.

In Table 2 of the main manuscript, segmentation accu-
racy metrics quantitatively measure the mesh-image align-
ment of different approaches on the LSP dataset. As orig-
inally done in Lassner et al. [10], silhouette (i.e., Fore-
ground/Background, FB) and Part segmentation are consid-
ered in calculating the accuracy and f1 scores.

For 2D human pose estimation task on COCO1, the
commonly-used Average Precision (AP) is adopted as the
evaluation metric. AP is calculated based on the Object
Keypoint Similarity (OKS), which plays a similar role as
IoU in object detection. In Table 3 of the main manuscript,
the results are reported using mean AP, and variants of AP
including AP50 (AP at OKS = 0.50), AP75 (AP at OKS =
0.75), APM for persons with medium sizes, and APL for
persons with large sizes.

S4. More Experimental Results
More Quantitative Results. To evaluate the perfor-

mances of PyMAF on human images with occlusions and
different body shape styles, we conduct evaluation experi-
ments on 3DOH50K [19] and SSP-3D [16] datasets. The
test set of 3DOH50K includes 1,290 person images in oc-
clusion scenarios, while SSP-3D consists of 311 images
of sport persons with a variety of body shapes and poses.

1https://cocodataset.org/#keypoints-eval
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3DOH50K SSP-3D

PVE↓ MPJPE↓ mIOU↑
SPIN [9] 113.4 102.3 70.2
Baseline 113.1 102.0 70.8
PyMAF 107.3 96.2 72.1

Table S1: Reconstruction performances on 3DOH50K and
SSP-3D datasets.

Figure S2: Reconstruction results of PyMAF on the SSP-
3D [16] dataset. PyMAF fails to handle extreme shapes due
to the lack of training data.

Note that we only perform testing on these two datasets and
do not use their data for training. Experimental results on
3DOH50K and SSP-3D are reported in Tab. S1, and quali-
tative results are shown in Figures S3 and S2. PyMAF can
improve the reconstruction under occlusions on 3DOH50K
and help with more accurate shape estimation on SSP-3D.
Despite the numerical performance gains, PyMAF fails to
handle extreme shapes on the SSP-3D dataset, as shown in
Figure S2.

More Qualitative Results. We provide more qualitative
results and compare our PyMAF with the state-of-the-art
approach SPIN [9]. Figure S4 shows the qualitative dif-
ferences between each iterative loop in SPIN [9] and Py-
MAF, which uses the global features and spatial features for
the parameter update respectively. We can see that PyMAF
convergences much faster and corrects the mesh parameters
more effectively. In Figure S5, we show more reconstruc-
tion results for qualitative comparisons with SPIN on both
indoor and in-the-wild datasets, where PyMAF can produce
natural results which are better-aligned with the images un-
der challenging cases. Note that our approach is comple-
mentary to SPIN, since SPIN aims at providing better super-
vision for the regression network, while our work focuses
on the architecture design of the regression network.

To demonstrate the efficacy of the parameter rectification

in PyMAF, we further provide more examples on COCO
and 3DPW in Figures S6 and S7, respectively. We can ob-
serve that PyMAF improves the mesh-image alignment pro-
gressively by correcting the predictions based on the current
observations. We also visualize some erroneous results of
our approach in Figure S8, where PyMAF may fail when
the initial reconstructed results have severe deviations due
to the heavy occlusions or ambiguous limb connections in
complex scenes.
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Figure S3: Reconstruction results of PyMAF on the 3DOH50K [19] dataset. PyMAF helps to handle occlusions.
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Figure S4: Qualitative differences between each iterative loop of the SPIN [9] using global features vs. the PyMAF using
spatial features.
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Figure S5: Qualitative comparison of the reconstruction results between SPIN [9] and our PyMAF approach. For each
example, the upper / lower results correspond to the reconstructed meshes of SPIN (pink) / PyMAF (purple). Examples come
from various datasets, including COCO (Rows 1-3), 3DPW (Row 4), and Human3.6M (Row 5).
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Figure S6: Successful results of PyMAF on the COCO dataset. For each example from left to right: image, the results after
each iteration.
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Figure S7: Successful results of PyMAF on the 3DPW dataset. Examples have the same layout with Figure S6.
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Figure S8: Erroneous reconstructions of our network. Though PyMAF can improve the alignment of some body parts, it
remains challenging for PyMAF to correct those body parts with severe deviations, heavy occlusions, or ambiguous limb
connections. Examples have the same layout with Figure S6.
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