
Self-Supervised Pretraining of 3D Features on any Point-Cloud
(Supplemental Material)

We provide the model architecture details in § 1. Hyper-
parameters used in training and fine-tuning for PointNet++
and UNet and additional results are shown in § 2. We also
show hyper-parameters used in training and fine-tuning for
PointnetMSG and Spconv-UNet and results for other cate-
gories of detection in KITTI in § 3.

1. Architecture Details
PointNet++ model used in Section 4, 5.1 and 5.2. As
shown in Table 1, PointNet++ contains four set abstraction
layers and two feature up-sampling layers, designed in [6].
Each SA layer is specified by (n, r, [c1, ..., ck]), where n
represents number of output points, r represents the ball-
region radius of the reception field, ci represents the fea-
ture channel size of the i-th layer in the MLP. Each feature
up-sampling (FP) layer upsamples the point features by in-
terpolating the features on input points to output points, as
designed in [7]. Each FP layer is specified by [c1, ..., ck]
where ci is the output of the i-th layer in the MLP. In Section
4.1.1 of the main paper, we create higher capacity versions
of the PointNet++ model by increasing the channel width.
For PointNet++ 2×, 3× and 4×, we multiply the feature
size by {2, 3, 4} of each layer in the MLP of the four set

layer name input layer type output size layer params
sa1 point cloud (xyz) SA (2048,3+128) (2048,0.2,[64, 64, 128])
sa2 sa1 SA (1024,3+256) (1024,0.4,[128, 128, 256])
sa3 sa2 SA (512,3+256) (512,0.8,[128, 128, 256])
sa4 sa3 SA (256,3+256) (256,1.2,[128, 128, 256])
fp1 sa3,sa4 FP (512,3+512) [512, 512]
fp2 sa2,sa3 FP (1024,3+512) [512, 512]

Table 1: PointNet++ Network Architecture used in Section 4,
5.1 and 5.2.

layer name input layer type output size layer params
sa1 point cloud (xyz) SA (4096,3+96) (0.1, [16, 16, 32], 0.5, [32, 32, 64])
sa2 sa1 SA (1024,3+256) (0.5, [64, 64, 128], 1.0, [64, 96, 128])
sa3 sa2 SA (256,3+512) (0.1, [128, 196, 256], 0.5, [128, 196, 256])
sa4 sa3 SA (64,3+1024) (0.1, [256, 256, 512], 0.5, [256, 384, 512])
fp1 sa3,sa4 FP (256,3+1024) [512, 512]
fp2 sa2,sa3 FP (1024,3+1024) [512, 512]
fp3 sa1,sa2 FP (4096,3+512) [256, 256]
fp4 point cloud,sa1 FP (16384,3+256) [128, 128]

Table 2: PointnetMSG Network Architecture used in Section
5.3.

abstraction layers. When applying PointNet++ in VoteNet
and H3DNet, we adjust the rest of the model accordingly
based on different point feature size.

PointnetMSG model on LiDAR data used in Section 5.3.
Table 2 shows the architecture details for PointnetMSG,
which processes lidar point cloud for PointRCNN detection
model. PointnetMSG contains four multi-scale set abstrac-
tion layers and four feature up-sampling layers. Multi-scale
set abstraction samples points in different scales and pro-
cess them with different MLPs. In here, we adopt the ar-
chitecture design in [8], in which each set abstraction layer
contains two point features produced with two ball-region
radius and two MLPs. As shown in Table 2, each SA layer
is specified by (r1, [c11, ..., c

1
k], r

2, [c21, ..., c
2
k]), where r1, r2

indicates the ball-region radius for each scale and c1i , c
2
i in-

dicates the feature channel size of the i-th layer in the MLP
of each scale. We directly apply the learnt PointnetMSG in

Figure 1: UNet Network Architecture used in Section 4.2.

1



Figure 2: Spconv-UNet Network Architecture used in Section
5.3 of the main paper.

PointRCNN for detection evaluation in KITTI.

UNet model used in Section 4.2. Fig 1 shows the network
architecture for UNet. It mainly contains four encoding res-
block and four decoding resblock. We use sparse convolu-
tion and sparse resblock designed in [2]. For each sparse
resblock, we first apply sparse convolution or deconvolu-
tion, depending on encoding or decoding, with kernel size 2
and stride 2. Then, we apply N number of sparse convolu-
tion layers with kernel size 3 and stride 1. D represents the
output feature dimension. Since sparse convolution takes
variable sized input and output, we do not specify the num-
ber of voxels in each layer here. We directly apply the learnt
UNet backbone for different scene segmentation tasks.

Spconv-UNet model on LiDAR data used in Section 5.3.
Fig 2 shows the network architecture for Spconv-UNet used
for Part A2 detection model. It mainly contains four sparse
blocks for encoding and four sparse upblocks for decoding.
We use sparse convolution and sparse resblock designed
in [9]. For each sparse block/upblock, we show the num-
ber of convolution layers N and output feature dimension
D. We directly adopted the architecture design in Part A2.
For KITTI detection evaluation, we directly load the learnt
backbone for fine-tuning.

2. Training Details

2.1. Pretraining Details

As mentioned in the main paper, we use a standard
SGD optimizer with momentum 0.9, cosine learning rate
scheduler starting from 0.12 to 0.00012 and train the model
for 1000 epochs with a batch size of 1024. We observed
that pretraining for 400 epochs already gives good results,
and 1000 epochs for pretraining only slightly improve the
model.

2.2. Experimental Details for PointNet++

For all the VoteNet fine-tuning evaluations, we use the
original configurations [6], where we apply Adam opti-
mizer [4] and use a base learning rate 0.001 with a 10×
weight decrease at 80, 120 and 160 epochs. The model is
trained for 180 epochs in total. Since the training set of
S3DIS [1] only contains 200 training instances, we train for
360 epochs. We use a batch size of 8 for ScanNet, Matter-
port3D, and S3DIS, and a batch size of 16 for SUNRGBD.
We use the same configuration for training from scratch and
fine-tuning, and we only load the pretrained PointNet++
backbone during fine-tuning.

For the H3DNet fine-tuning, we only use one backbone
network instead of the original four [12]. For initial learn-
ing rate and decays, we use the original configurations. We
found that with 3× PointNet++ backbone, we are able to
re-produce the previous results reported in the paper with
one backbone network. We use the same configuration for
training from scratch and fine-tuning, and we only load the
pretrained PointNet++ backbone during fine-tuning.

2.2.1 3D Shape Classification

In Section 5 of the main paper, we used the ModelNet
dataset [11] for transfer learning. We trained linear clas-
sifiers on fixed features for this task and measured the clas-
sification accuracy.

Full finetuning. We now show results on the same task
but using finetuning, i.e., all the parameters of the backbone
model are updated. We use the PointNet++ backbone to
extract per-point feature and apply max-pooling to get the
final global feature vector. We then apply one linear layer

Task Scratch DepthContrast
ModelNet Linear (Accuracy) 50.7 85.4
ModelNet Finetune (Accuracy) 88.2 91.3

Table 3: ModelNet [11]. We evaluate models by linear probing
and full fine-tuning. We pretrain PointNet++ models using Depth-
Contrast on the ScanNet-vid dataset.

2



Task Without Aug With Aug
ModelNet (Accuracy) 79.4 86.5

Table 4: Effect of Data Augmentation. We train with the Spher-
ical CNN baseline [3] on the shape classification dataset [11], and
we show test results with data augmentations during training ver-
sus without.

20 50 70 100
Percentage of Labeled Data

15

20

25

30

35

40

De
te

ct
io

n 
AP

25

VoteNet model on Matterport3D

Scratch
Our pretraining

20 50 70 100
Percentage of Labeled Data

10

15

20

25

30

35

40

De
te

ct
io

n 
AP

25

VoteNet model on Stanford S3DIS

Scratch
Our pretraining

Figure 3: Label-efficiency for Matterport3D and S3DIS detec-
tion tasks. We pretrain a PointNet++ backbone model using our
DepthContrast method on the ScanNet-vid dataset.

to get the final class labels. We use SGD+momentum op-
timizer with an initial learning rate 0.01. We use multistep
LR scheduler with 10× weight decrease at 8, 16 and 24
epochs. We train for 28 epochs. We apply the data augmen-
tation used in [6] during training. We use the same con-
figuration for training from scratch and fine-tuning, and we
only load the pretrained PointNet++ backbone during fine-
tuning. For linear probing, we fix the pretrained weight and
only fine-tune the last linear layer. In Table 3, we compare
the fine-tuning and train from scratch results for both lin-
ear probing and full fine-tuning. The pretrained PointNet++
model provides consistent improvements.

Data Augmentation with Rotation-Equivariance Net-
works. We now show effects of data augmentations on
rotation-equivariance neural networks. We use this Spheri-
cal CNN baseline [3], and we compare training from scratch
without any data augmentation and with some data augmen-
tation methods, such as random rotations. As shown in Ta-
ble , despite of the nature of rotation-equivariance, applying
data augmentations still provides considerate performance
boost. Therefore, as long as there are output prediction or
embedding variances with versus without data augmenta-
tions, those variances will serve as the main training signals
for our self supervised pretraining method.

Task Scratch DepthContrast
ScanNet segmentation (mIOU) 70.3 71.2

Table 5: ScanNet scene segmentation. We evaluate UNet models
after finetuning on the ScanNet scene segmentation task. We pre-
train the DepthContrast UNet models on the ScanNet-vid dataset.

2.2.2 Label efficiency of PointNet++

We follow the same settings as Section 4.1.4 of the main
paper and evaluate the label efficiency of the PointNet++
pretrained using DepthContrast. In Figure 1 (main paper)
we showed that DepthContrast pretraining was label effi-
cient on the ScanNet and SUNRGBD datasets. In Fig 3,
we show the label efficiency plots for Matterport3D and
S3DIS downstream detection tasks. Our results are con-
sistently better than training from scratch across all the de-
tection benchmarks used in the paper.

2.3. Experimental Details for UNet

For all the UNet fine-tuning evaluation, we use
SGD+momentum optimizer with an initial learning rate 0.1.
We use Polynomial LR scheduler with a power factor of 0.9.
Weight decay is 0.0001. For voxel size, we use 0.05(5cm)
for S3DIS and Synthia and 0.04(4cm) for ScanNet. We use
the original data augmentation techniques in [2]. We use
batch size 48 for S3DIS and 56 for ScanNet and Synthia.
We train the model with 8 V100 GPUs with data parallelism
for 20000 iterations for all three tasks. We use the same con-
figuration for training from scratch and fine-tuning, and we
only load the pretrained UNet backbone during fine-tuning.

2.3.1 ScanNet Segmentation

For ScanNet scene segmentation, due to memory issue,
we increased the voxel size from the default 0.02(2cm) to
0.04(4cm), which leads to different scratch training results
compared to [2]. Although we are pretraining and fine-
tuning on the same dataset, our approach still provides im-
provements as shown in Table 5.

2.3.2 Label efficiency of UNet

We pretrain a UNet model using DepthContrast on the
ScanNet-vid dataset. We finetune this model for scene seg-
mentation task. In Fig 4, we show the data efficiency plot
for S3DIS scene segmentation dataset. Our approach pro-
vides consistent performance boost for different percent-
ages of training data used.

3. Experimental Details for Lidar Data
We now present the experimental details when using

DepthContrast on LiDAR 3D data (Section 5.3 of the main

3

tab:supp:modelnet:sphere


paper).

3.1. Fine-tuning Details

We use the original configuration from PointRCNN [8]
and Part A2 [9] to get the scratch training results for dif-
ferent splits of training dataset. For PointRCNN, we use
AdamW optimizer [5] with an initial learning rate 0.01,
weight decay 0.01, and momentum 0.9. For Part A2, we
also use AdamW optimizer [5] with an initial learning rate
0.003, weight decay 0.01, and momentum 0.9. We use batch
size 24 for PointRCNN and batch size 16 for Part A2. We
train both models for 80 epochs, and the learning rate will

5 10 20 5070100
Percentage of Labeled Data

40

45

50

55

60

65

70

Se
gm

en
ta

tio
n 

m
IO

U

UNet model on Stanford S3DIS

Scratch
Our pretraining

Figure 4: Label-efficiency for S3DIS scene segmentation task
using the UNet model on voxel input. UNet model was pretrained
on ScanNet-vid using our DepthContrast method.

5 10 20 50 100
Percentage of Labeled Data

64

70

75

80

De
te

ct
io

n 
m

AP

PointRCNN on KITTI

Scratch
Our pretraining

5 10 20 50 100
Percentage of Labeled Data

59

65

70

75

80

De
te

ct
io

n 
m

AP

Part-A2 model on KITTI

Scratch
Our pretraining

Figure 5: Label-efficiency for KITTI car detection at moderate
difficulty level. We evaluate on the val split of the KITTI dataset.

5 10 20 50 100
Percentage of Labeled Data

56

58

60

De
te

ct
io

n 
m

AP

PointRCNN on KITTI

Scratch
Our pretraining

5 10 20 50 100
Percentage of Labeled Data

50

55

60

65

De
te

ct
io

n 
m

AP

Part-A2 model on KITTI

Scratch
Our pretraining

Figure 6: Label-efficiency evaluation for KITTI pedestrian
detection at moderate difficulty level. We use the val split of the
KITTI dataset.

5 10 20 50 100
Percentage of Labeled Data

55

60
De

te
ct

io
n 

m
AP

PointRCNN on KITTI

Within format loss
Joint loss

5 10 20 50 100
Percentage of Labeled Data

55

60

65

De
te

ct
io

n 
m

AP

Part-A2 model on KITTI

Within format loss
Joint loss

Figure 7: Comparison between within format and joint train-
ing loss. Label-efficiency evaluation for pedestrian detection at
moderate difficulty level of the KITTI val split

drop by 10× at 35 and 45 epochs. For both methods, we
apply the same data augmentation and processing pipelines
in [10].

We use the same configuration for training from scratch
and fine-tuning for 5%, 10%, 20% and 50% of the labeled
training data. For 100% training data, we observed over-
fitting issue for classes with fewer training instances, such
as cyclist and pedestrian. Thus, we increased the initial
learning rate by 2×. For PointRCNN, we also decreased
the number of training epochs to 60 and set the first weight
drop at 30 epochs. After modifying those parameters, we
observed that the performance of scratch training didn’t
change.

3.2. Results on KITTI

In the main paper, due to space constraints, we only
showed the results on the cyclist class in the KITTI
dataset. We present results on the remainder classes.

We show the label efficiency evaluation results for car

4



detection in KITTI in Fig 5. For simplicity, we only show
the results at moderate difficulty level. The results at other
difficulty levels maintain similar pattern. DepthContrast
provides a performance boost with fewer training instances,
especially with 5% of labeled data.

In Fig 6, we show the label efficiency evaluation results
for pedestrian detection in KITTI. Our pretraining pro-
vides consistent gain over scratch for PointRCNN model.
For Part A2, our pretraining also provides significant per-
formance boost with fewer training instances.
Advantage of joint training over within-format loss.
Similar to Section 4.3 of the main paper, we analyze if train-
ing jointly with the within and across-format losses pro-
vides better transfer performance. Specifically, we compare
(Equation 3 of the main paper) our full joint loss with the
within-format only loss. We pretrain separate models with
these losses and evaluate them on the KITTI dataset.

In Fig 7, we show the label efficiency evaluation results
for pedestrian detection. We can see that with joint loss
training, the model provides more performance gain with
fewer training instances, which proves that the benefit of
joint training holds across different pretraining data and ar-
chitectures.

References
[1] Iro Armeni, Sasha Sax, Amir Roshan Zamir, and Silvio

Savarese. Joint 2d-3d-semantic data for indoor scene under-
standing. CoRR, abs/1702.01105, 2017.

[2] Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4d
spatio-temporal convnets: Minkowski convolutional neural
networks. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 3075–3084,
2019.

[3] Carlos Esteves, Christine Allen-Blanchette, Ameesh Maka-
dia, and Kostas Daniilidis. Learning so (3) equivariant repre-
sentations with spherical cnns. In Proceedings of the Euro-
pean Conference on Computer Vision (ECCV), pages 52–68,
2018.

[4] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In 3rd International Conference on
Learning Representations, ICLR 2015, San Diego, CA, USA,
May 7-9, 2015, Conference Track Proceedings, 2015.

[5] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101, 2017.

[6] Charles R Qi, Or Litany, Kaiming He, and Leonidas J
Guibas. Deep hough voting for 3d object detection in point
clouds. arXiv preprint arXiv:1904.09664, 2019.

[7] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. In Advances in neural informa-
tion processing systems, pages 5099–5108, 2017.

[8] Shaoshuai Shi, Xiaogang Wang, and Hongsheng Li. Pointr-
cnn: 3d object proposal generation and detection from point
cloud. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 770–779, 2019.

[9] Shaoshuai Shi, Zhe Wang, Jianping Shi, Xiaogang Wang,

and Hongsheng Li. From points to parts: 3d object detec-
tion from point cloud with part-aware and part-aggregation
network. arXiv preprint arXiv:1907.03670, 2019.

[10] OpenPCDet Development Team. Openpcdet: An open-
source toolbox for 3d object detection from point clouds.
https://github.com/open-mmlab/OpenPCDet, 2020.

[11] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-
guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d
shapenets: A deep representation for volumetric shapes. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion, CVPR 2015, Boston, MA, USA, June 7-12, 2015, pages
1912–1920, 2015.

[12] Zaiwei Zhang, Bo Sun, Haitao Yang, and Qixing Huang.
H3dnet: 3d object detection using hybrid geometric primi-
tives. arXiv preprint arXiv:2006.05682, 2020.

5

https://github.com/open-mmlab/OpenPCDet

