
Supplementary Materials for Separable Flow

1. Architecture Details
1.1. Feature & Context Net

Features are extracted from the input images using a convolutional network. We use the feature encoder network from
RAFT [7]. The network is applied to both I1 and I2 and maps the input images to dense feature maps at a lower resolution.
As detailed in Table 1, our encoder outputs features at 1/8 resolution, F ∈RH×W×D where H and W are one eighth the height
and width of the input image, and we set D = 256. The feature encoder consists of 6 residual blocks, 2 at 1/2 resolution, 2 at
1/4 resolution, and 2 at 1/8 resolution.

We additionally use a context network, again identical to the one used in RAFT [7]. The context network extracts features
only from the first view I1. The architecture of the context network is similar to the feature extraction network. The only
differences are that the feature encoder uses instance normalization while the context encoder uses batch normalization, and
the context network also outputs the weight w1, ...,w4 for the cost aggregation net.

1.2. Cost Aggregation Net

Table 1 presents the details of the parameters of the matching cost aggregation net that is used in experiments to produce
state-of-the-art accuracy on Sintel [1] and KITTI [5] benchmarks. It has four SGA layers and eight 3D convolutional layers
for cost aggregation. Two cost aggregation networks are used, one for horizontal motion u, and one for vertical motion v,
with no weight sharing.

1.3. Refinement & Upsampling Net

We use the recurrent transformer proposed in RAFT [7] as the the upsampling & refinement block. It takes in context
features, cost/correlation features (lookup from the cost volume or correlation volume), and the current estimate of flow
(initially computed by the motion regression) to update the latent hidden state. The updated hidden state is used to predict
the flow update.

We made two improvements to the refinement block of RAFT [7]. First, we initialize the flow with our motion regression
results; the original RAFT [7] initializes flow with zero motion. The initialization with motion regression can improve both
the convergence speed and the prediction accuracy. Second, for the correlation/cost feature, we lookup the cost values from
the two aggregated cost volumes, Cu and Cv, output by the cost aggregation block. The features are then concatenated along
with the original C (without aggregation) to construct the cost/correlation features [Cu(u),Cv(v),C(u,v)] (where (u,v) are the
candidate lookup set in each refinement iteration [7].)

2. Training Details
Table 2 presents the details of the training schedule and settings used with each dataset. We follow RAFT [7] for the data

augmentation.
Photometric Augmentation: We randomly perturb brightness, contrast, saturation, and hue. We use the Torchvision
ColorJitter with brightness 0.4, contrast 0.4, saturation 0.4, and hue 0.5/π . On KITTI, we reduce the degree of augmen-
tation to brightness 0.3, contrast 0.3, saturation 0.3, and hue 0.3/π . Photometric augmentation is performed on each image
randomly with probability 0.2.
Spatial Augmentation: We randomly rescale and stretch the images. The degree of random scaling depends on the dataset.
For FlyingChairs, we perform spatial augmentation in the range 2[−0.2,1.0], FlyingThings 2[−0.4,0.8], Sintel 2[−0.2,0.6], and
KITTI 2[−0.2,0.4]. Spatial augmentation is performed with probability 0.8.

No. Layer Description Output Tensor

Feature & Context Net

input image view H×W×3
1 7×7 conv, stride 2 1/2H×1/2W×64
2 Residual Block 1/2H×1/2W×64
3 Residual Block, stride 2 1/4H×1/4W×96
4 Residual Block, stride 2 1/8H×1/8W×128

output 3×3 conv 1/8H×1/8W×256

weight w1 from 4: 3×3 conv, 1×1 conv, reshape 1/8H×1/8W×10×20
weight w2 from 4: 3×3, stride 2, conv, 1×1 conv, reshape 1/16H×1/16W×20×20
weight w3 from 4: 3×3, stride 2, conv, 1×1 conv, reshape 1/16H×1/16W×20×20
weight w4 from 4: 3×3 conv,1×1 conv, reshape 1/8H×1/8W×10×20

Cost Aggregation

input cost volume 1/8H×1/8W×1/8|U |×4
[1] 3×3×3, 3D conv 1/8H×1/8W×1/8|U |×10
[2] SGA layer [10]: weight from w1 1/8H×1/8W×1/8|U |×10
[3] concatenate [1,2], 3×3×3, 3D conv 1/8H×1/8W×1/8|U |×10
[4] 3×3×3, 3D conv, stride 2 1/16H×1/16W×1/16|U |×20
[5] SGA layer [10]: weight from w2 1/16H×1/16W×1/16|U |×20
[6] concatenate [4,5], 3×3×3, 3D conv 1/16H×1/16W×1/16|U |×20
[7] SGA layer [10]: weight from w3 1/16H×1/16W×1/16|U |×20
[8] concatenate [6,7], 3×3×3, 3D conv 1/16H×1/16W×1/16|U |×20
[9] 3×3×3, 3D deconv, stride 2 1/8H×1/8W×1/8|U |×10
[10] SGA layer [10]: weight from w4 1/8H×1/8W×1/8|U |×10
[11] concatenate [3,9,10], 3×3×3, 3D conv 1/8H×1/8W×1/8|U |×10
[12] 3×3×3, 3D to 2D conv, output cost volume 1/8H×1/8W×1/8|U |

regression softmax, motion regression 1/8H×1/8W×1

Table 1: Parameters of the feature extraction and cost aggregation blocks

Stage Weights Training Data Learning Rate Batch Size Weight Decay Crop Size Iterations

Chairs - C 4e-4 12 1e-4 [368, 496] 100k
Things Chairs T 1.25e-4 6 1e-4 [400, 720] 100k
Sintel Things S+T+K+H 1.25e-4 6 1e-5 [368, 768] 100k
KITTI Sintel K 1e-4 6 1e-5 [288, 960] 50k

Table 2: Details of the training schedule. Dataset abbreviations: C: FlyingChairs, T: FlyingThings, S: Sintel, K: KITTI-2015,
H: HD1K. During the Sintel Finetuning phase, the dataset distribution is S(.71), T(.135), K(.135), H(.02).

Occlusion Augmentation: Following HSM-Net [9], we also randomly erase rectangular regions in I2 with probability 0.5
to simulate occlusions.

3. Computational Complexity
We measure the computational complexity of our model in terms of FLOPs (floating-point operations of multiply-adds).

Using KITTI resolution (1242× 375) as input, the state-of-the-art RAFT has a complexity of 4.5T (Trillion) FLOPs. As a
comparison, the number of FLOPs in our model is 4.6T which is only 2% larger than the RAFT baseline.

4. More Results
4.1. Challenging Regions

Table 3 evaluates the performance of the models in challenging regions/objects (using occlusion mask and car mask in
KITTI dataset for evaluations). In the occluded regions, the improvement (2.3%) is 9.5× as much per pixel as that in the

motion v

20
10

0
10

20
motion u

80
60

40 20 0 20 40 60 80

m
at

ch
in

g
sc

or
e

3
2
1

0
1
2
3
4
5
6

(a) Cost Volume of RAFT [7]

motion v

20
10

0
10

20 motion u

80 60 40 20 0 20 40 60 80

m
at

ch
in

g
sc

or
e

0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

(b) Cost Volume of SGM [8]

motion v

20
10

0
10

20 motion u

80 60 40 20 0 20 40 60 80

m
at

ch
in

g
sc

or
e

3
2
1

0
1
2
3
4
5
6

(c) Cost Volume of Ours

Figure 1: Cost volume visualization with respect to displacements (u,v), for a pixel selected from reflections in a car window. The
matching cost distribution output by state-of-the-art RAFT [7] (a), has many false peaks due to the influence of the ambiguities (reflections)
and lack of non-local aggregation. The wrong matches can easily have higher matching score than the correct one. We also compare with
the cost volume after direct SGM processing [8] (b). We find that our Separable Flow (c) can learn a better cost volume, with sharp peaks
at the ground truth motions.

Models Non-occ bg (83%) Occ (12%) Cars (5%) All

RAFT 3.07 20.1 7.07 5.36
Ours 2.83 (0.24↑) 17.8 (2.3↑) 6.34 (0.73↑) 4.85 (0.51↑)

Table 3: Evaluations in challenging occlusions and foreground objects (cars).

non-occluded background (0.24%). And in the challenging objects (e.g. cars with reflections and large smoothness regions),
the improvement is 3× that of the background.

4.2. Synthetic to Real

We train our model on the synthetic data (FlyingChairs [4], FlyingThings [6] and VKITTI [2]), and test on the real KITTI
scenes. Examples of results are presented in Fig. 2.

4.3. High-resolution Predictions

To demonstrate that our method scales well to scenes of very high resolution, we apply our network to HD video from
the Cityscapes [3] dataset. With the model trained on synthetic data, we test the performance on 1024×2048 resolution
Cityscapes images/videos. Fig. 3 visualizes example results on Cityscapes.

References
[1] Daniel J Butler, Jonas Wulff, Garrett B Stanley, and Michael J Black. A naturalistic open source movie for optical flow evaluation.

In Proceedings of the European conference on computer vision (ECCV), pages 611–625. Springer, 2012. 1
[2] Yohann Cabon, Naila Murray, and Martin Humenberger. Virtual kitti 2, 2020. 3
[3] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan

Roth, and Bernt Schiele. The cityscapes dataset for semantic urban scene understanding. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 3213–3223, 2016. 3

[4] Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip Hausser, Caner Hazirbas, Vladimir Golkov, Patrick Van Der Smagt, Daniel
Cremers, and Thomas Brox. Flownet: Learning optical flow with convolutional networks. In Proceedings of the IEEE international
conference on computer vision, pages 2758–2766, 2015. 3

[5] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision meets robotics: The kitti dataset. The International
Journal of Robotics Research, 32(11):1231–1237, 2013. 1

[6] Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer, Daniel Cremers, Alexey Dosovitskiy, and Thomas Brox. A large dataset
to train convolutional networks for disparity, optical flow, and scene flow estimation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 4040–4048, 2016. 3

(a) Input views (b) RAFT [7] (c) Ours

Figure 2: Qualitative comparisons. The models are trained on the synthetic data and tested on the real KITTI scenes. (b) Results of the
state-of-the-art RAFT [7]. (c) Results of our Separable Flow. Our Separable Flow performs better in synthetic-to-real generalization.

[7] Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field transforms for optical flow. In Proceedings of the European Conference
on Computer Vision (ECCV), pages 402–419. Springer, 2020. 1, 3, 4

[8] Jia Xu, René Ranftl, and Vladlen Koltun. Accurate optical flow via direct cost volume processing. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 1289–1297, 2017. 3

[9] Gengshan Yang, Joshua Manela, Michael Happold, and Deva Ramanan. Hierarchical deep stereo matching on high-resolution images.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 5515–5524, 2019. 2

[10] Feihu Zhang, Victor Prisacariu, Ruigang Yang, and Philip HS Torr. Ga-net: Guided aggregation net for end-to-end stereo matching.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 185–194, 2019. 2

(a) Input views (b) Optical Flow Predictions

Figure 3: Results on high-resolution videos. The model is trained on the synthetic data and tested on the high-resolution Cityscapes
scenes.

