
[Supplementary Material] Structured Outdoor Architecture Reconstruction
by Exploration and Classification

Fuyang Zhang Xiang Xu Nelson Nauata Yasutaka Furukawa
Simon Fraser University, BC, Canada

{fuyangz, xuxiangx, nnauata, furukawa}@sfu.ca

The supplementary document provides 1) architecture
specifications of our junction/edge classifiers and a baseline
system (Per-edge model) and 2) additional experimental re-
sults.

1. Architecture specifications
1.1. Junction/edge classifiers

Table 1 shows the full architecture specifications of our
junction/edge classifiers.

In our classifiers, the deep U-Net is composed of a stack
of six downstream/upstream convolution layers (kernel=3,
stride=2, padding=1), whose input is a building RGB image
and output is a 256× 256× 64 feature volume.

The shallow U-Net contains five downstream/upstream
convolution layers (kernel=3, stride=2, padding=1). Shal-
low network takes the building feature volume, pretrained
corner/edge confidence mask (2 dims), plus, corner/edge
masks (2 dims) rendered from the input graph. The
corned/edge confidence mask and corner/edge masks are
first passed to a Conv-block, resulting in a 16 × 256 × 256
feature, which concatenates with feature volume from deep
U-Net as next stage input. The final output is a cor-
rect/incorrect prediction mask 256× 256× 1.

Our pretrained model is also a U-Net. We train this net-
work from scratch for segmenting corners and edges as two-
channels. Supervision are coarser GT corners and edges
masks rendered with 5 pixels of diameters and 3 pixels of
thickness. Weights are kept fixed after training once.

1.2. Per-edge model

Per-edge model is a baseline model to produce the ini-
tial graphs (Sec. 6.1 in the main paper), which classifies
correctness of every edge independently. We use the cor-
ner detection from Conv-MPN [3] to detect corners, then
use a CNN-based edge classifier for every pair of corners
independently.

The edge classifier is equivalent to Conv-MPN architec-
ture without the message passing [3]. Specifically, a fully

CNN network takes RGB image and one edge rendered
mask as input (4 channels totally), then estimates the cor-
rectness of the corresponding edge. The supervision is the
same as the edge label mentioned in “classification label
generation” in Sec. 4.2. We refer to the Conv-MPN pa-
per [3] for the full architectural specifications.

2. Additional experimental results
Fig. 1,2 show qualitative comparisons against the com-

peting three systems from the ablation studies in the main
paper, (1) no data augmentation (denoted as w/o exp), (2)
data augmentation by random sampling (rand exp), and (3)
no geometry classification (w/o classifiers). Two RL-based
methods are also shown in Fig. 1,2, (4) REPL [1] and (5)
Lin et al. [2]. Conv-MPN [3] reconstructions are used as
initial models.

Fig. 3-34 show additional experimental results as Fig. 6
of the main paper.

1



Table 1. Architecture specification. [·] represents a layer block. ×i denotes repeating the layers i times. The shallow U-Net is half resolution
and 1 block less than the deep U-Net, except first layer takes output from deep U-Net as input. d = {32, 64, 128, 256, 512, 1024, 2048}.
The output of the shallow U-Net after Sigmoid layer is applied a linear transform, mapping [0, 1] to [−1, 1] for calculating classification
scores.

Module Stage Specification Output Size

Deep U-Net Input
3× 3× 3, 32, stride = 1

32× 3× 3, 32, stride = 1
32× 256× 256

Down{1...6}

 di × 3× 3, di, stride = 2

di × 3× 3, di+1, stride = 1

di+1 × 3× 3, di+1, stride = 1

× 6 2048× 4× 4

Up{1...6}

 di+1 × 4× 4, di, stride = 2(deconv)

di+1 × 3× 3, di, stride = 1

di × 3× 3, di, stride = 1

× 6 32× 256× 256

Out
64× 3× 3, 1, stride = 1

Sigmoid
64× 256× 256

Shallow U-Net Input
4× 3× 3, 16, stride = 1

16× 3× 3, 16, stride = 1
16× 256× 256

Down{1...5}

 (16 + 64)× 3× 3, (16 + 64), stride = 2
(16 + 64)× 3× 3, 64, stride = 1

64× 3× 3, 64, stride = 1

 di × 3× 3, di, stride = 2
di × 3× 3, di+1, stride = 1

di+1 × 3× 3, di+1, stride = 1

× 4

1024× 4× 4

Up{1...5}

 di+1 × 4× 4, di, stride = 2(deconv)

di+1 × 3× 3, di, stride = 1

di × 3× 3, di, stride = 1

× 5 32× 256× 256

Out
32× 3× 3, 1, stride = 1

Sigmoid
1× 256× 256



Figure 1. Additional qualitative comparisons against baseline systems and RL-based methods.



Figure 2. Additional qualitative comparisons against baseline systems and RL-based methods.



Figure 3. Additional qualitative results.



Figure 4. Additional qualitative results.



Figure 5. Additional qualitative results.



Figure 6. Additional qualitative results.



Figure 7. Additional qualitative results.



Figure 8. Additional qualitative results.



Figure 9. Additional qualitative results.



Figure 10. Additional qualitative results.



Figure 11. Additional qualitative results.



Figure 12. Additional qualitative results.



Figure 13. Additional qualitative results.



Figure 14. Additional qualitative results.



Figure 15. Additional qualitative results.



Figure 16. Additional qualitative results.



Figure 17. Additional qualitative results.



Figure 18. Additional qualitative results.



Figure 19. Additional qualitative results.



Figure 20. Additional qualitative results.



Figure 21. Additional qualitative results.



Figure 22. Additional qualitative results.



Figure 23. Additional qualitative results.



Figure 24. Additional qualitative results.



Figure 25. Additional qualitative results.



Figure 26. Additional qualitative results.



Figure 27. Additional qualitative results.



Figure 28. Additional qualitative results.



Figure 29. Additional qualitative results.



Figure 30. Additional qualitative results.



Figure 31. Additional qualitative results.



Figure 32. Additional qualitative results.



Figure 33. Additional qualitative results.



Figure 34. Additional qualitative results.



References
[1] Kevin Ellis, Maxwell Nye, Yewen Pu, Felix Sosa, Josh

Tenenbaum, and Armando Solar-Lezama. Write, execute,
assess: Program synthesis with a repl. arXiv preprint
arXiv:1906.04604, 2019. 1

[2] Cheng Lin, Tingxiang Fan, Wenping Wang, and Matthias
Nießner. Modeling 3d shapes by reinforcement learning. In
European Conference on Computer Vision, pages 545–561.
Springer, 2020. 1

[3] Fuyang Zhang, Nelson Nauata, and Yasutaka Furukawa.
Conv-mpn: Convolutional message passing neural network
for structured outdoor architecture reconstruction. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 2798–2807, 2020. 1


