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Figure 1. The detailed process for generating Ka. ⊗ means
element-wise multiplication and summation.
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Figure 2. The detailed process for generating Kdc. ⊗ means
element-wise multiplication and summation.

1. Consensus-aware Kernel Construction

For better understanding, we show the detailed processes
for generating the adaptive kernels Ka with 1× 1 size and
the depthwise common kernel Kdc in Figure 1 and Fig-
ure 2, respectively.

2. The Necessity of Designing Two Kinds of
Kernels

We argue that it is necessary to design two kinds of ker-
nels, i.e., adaptive kernels and the common kernel, in our
model. 1) Using two different transformations to generate
two kinds of kernels mimics the multi-branch architecture
widely used in CNNs, hence increasing the transformation

*Corresponding author.

complexity and model capability. 2) Doing so can disen-
tangle the learning of image-wise adaptive information and
group-wise common knowledge, thus better conforming to
the nature of co-saliency detection. 3) Doing so makes it
possible to explore the relationship between the image-wise
adaptive information and group-wise common knowledge
encoded in our two kinds of kernels. This is very important
for co-saliency detection. However, only using a single kind
of kernel can not achieve this goal.

The effectiveness of the aforementioned two kinds of
kernels has been demonstrated in Table 1 in our paper. To
further verify the necessity of the large common kernel
(LCK), we report experimental results on four benchmark
datasets in Table 1. We can see that using large adaptive
kernels (LAK) alone at multiple levels can not obtain obvi-
ous improvement (“+LAK+ML” vs. “+LAK”). However,
using both kinds of kernels (“+LAK+LCK+ML”) at mul-
tiple levels largely outperforms “+LAK+ML”, thus further
verifying the necessity of LCK.

3. Model Complexity Analysis
We supplement the FLOPs and the number of param-

eters of the models in Table 1 in our paper, shown in
Table 2. By comparing the proposed large kernels with
vanilla kernels (“+LAK” vs. “+VAK” or “+LCK” vs.
“+VCK”), we can find that large kernels incur larger com-
putational costs due to the introduction of extra depthwise
kernels to increase kernel sizes. However, if we use the
same method as the vanilla kernels to generate large ker-
nels (“+Vanilla LAK + Vanilla LAK”), it can dramatically
increase computational costs compared to our proposed
method (“+LAK+LCK”), thus demonstrating the superior-
ity of using the depthwise separable convolution operation
for increasing kernel sizes. Finally, from Table 1 in our
paper and Table 3, we can see that “+LAK+LCK+ML” can
bring significant performance gains with acceptable compu-
tational costs growth compared to “+LAK+LCK”. Hence,
we use “+LAK+LCK+ML” as our final model.



Table 1. Ablation studies for verifying the necessity of the large common kernel (LCK). “LAK” means large adaptive kernels and “ML”
means adopting our proposed consensus-aware dynamic convolution (CADC) at multiple decoder levels.

Settings CoCA CoSOD3k CoSal2015 MSRC
Sm ↑ maxF ↑ Eξ ↑ MAE ↓ Sm ↑ maxF ↑ Eξ ↑ MAE ↓ Sm ↑ maxF ↑ Eξ ↑ MAE ↓ Sm ↑ maxF ↑ Eξ ↑ MAE ↓

+LAK 0.661 0.508 0.735 0.146 0.789 0.741 0.827 0.105 0.852 0.843 0.894 0.073 0.797 0.844 0.867 0.132
+LAK+ML 0.656 0.509 0.724 0.156 0.792 0.745 0.827 0.105 0.857 0.849 0.895 0.072 0.802 0.852 0.871 0.126
+LAK+LCK+ML 0.681 0.548 0.744 0.132 0.801 0.759 0.840 0.096 0.866 0.862 0.906 0.064 0.821 0.873 0.895 0.115

Table 2. FLOPs and the number of parameters of different model
variants. “VAK” and “VCK” mean vanilla adaptive kernels and the
vanilla common kernel, respectively. “LAK” and “LCK” repre-
sent large adaptive kernels and the large common kernel. “Vanilla
LAK” and “Vanilla LCK” mean vanilla large adaptive kernels and
the vanilla common kernel. “ML” means adopting CADC at mul-
tiple decoder levels.

FLOPs (G) Params (M)
baseline 90.710 24.637
+VAK 90.844 66.406
+VCK 90.796 42.238
+LAK 90.846 66.409
+LCK 90.896 91.053
+LAK+LCK 90.980 132.297
+Vanilla LAK + Vanilla LCK 93.000 352.439
+LAK+LCK+ML 91.800 392.850

4. More Visual Comparison with State-of-the-
Art Methods

We show more visual comparisons with state-of-the-art
models in Figure 4. It shows that our model can accu-
rately search and segment the co-occurring salient objects
in many challenging scenes, e.g., objects with small or big
sizes, complex backgrounds, and multiple objects. How-
ever, other methods are easily disturbed by the extraneous
salient objects or miss the target objects.

5. More Synthesized Examples
We show more synthesized examples generated by our

proposed data synthesis strategy in Figure 3.
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Figure 3. More synthesized examples of our proposed data synthesis strategies. (a) original images. (b) original ground truth. (c) normally
synthesized images. (d) ground truth for the normally synthesized images. (e) reversely synthesized images. (f) ground truth for the
reversely synthesized images.
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Figure 4. More qualitative comparison of our proposed model with other state-of-the-art methods.


