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In this supplementary material, we provide additional
details and analysis of our approach. In Section 2, we pro-
vide details about the network architecture of our object en-
coder module. Section 3 provides additional analysis of the
proposed approach. Details about the inference setting used
to annotate the tracking datasets in Section 4.3 of the main
paper are provided in Section 4. Detailed results on the
GOT10k validation set are provided in Section 5. We eval-
uate our approach on the YouTube-VOS 2018 validation set
in Section 6. Section 7 includes additional qualitative re-
sults on the DAVIS and GOT10k datasets. Additionally, we
also include a video showing the results of our approach on
the sequences from the DAVIS and GOT10k datasets.

1. Included video
We provide a video showing the masks produced by our

approach for sequences from DAVIS and GOT10k datasets.
Our approach generates high-quality masks even under
difficult circumstances, such as fast motions, appearance
change and shape change. The last sequence, bike-packing
from DAVIS, shows a particularly challenging case where
two objects are highly overlapping.

2. Structure of the object encoder
Here, we describe in detail the network structure em-

ployed for the object encoder, as shown in Fig. 1. Note
that our object encoder is formulated as (et, wt,mt) =
B(xt, bt). The network first takes as input the mask rep-
resentation of the bounding box bt and then passes it to
a convolution layer, a max pooling layer and two residual
blocks. The intermediate mask features are then concate-
nated with deep features xt and fed through another resid-
ual block, which reduces the feature dimension. Finally,
two similar heads are utilized to produce abstract embed-
ding et and weight wt. Although the embedding and weight
heads share common network to extract object representa-
tions, there is no need to share them for the single-frame

Figure 1. Architecture of object encoder.

encoding mt. Single-frame encoding mt is directly passed
to the decoder and has no connection with embedding et.
Thus, we use a different network to obtain the single-frame
encoding mt. This network has the same architecture as the
network used to obtain et and wt, with the only difference
that it has a single head with a convoluton and ReLU layers
to predict et.

3. Detailed analysis

Here, we provide a more detailed analysis of our ap-
proach for predicting object masks from bounding boxes in
videos.

Impact of the number of steepest-descent iterations: We
perform 5 steepest-descent algorithm iterations during
training in order to save training time and speed up con-
vergence. However, there is no need to only iterate 5 times
during inference. We perform experiments to analyse the
impact of iterating more times and give results in Tab. 1. In-
creasing the number of iterations from 5 to 15, the J score
increases by 1.2 on DAVIS2017 validation set. The perfor-



Figure 2. Additional qualitative results of our box to mask conversion network (third row) on DAVIS compared to the ground truth masks
(second row).

Figure 3. Additional qualitative results of our box to mask conversion network on GOT10k.

Num. iterations 5 10 15 20
YT300 85.4 85.6 85.6 85.6
DAVIS2017 val 80.0 80.9 81.2 81.2

Table 1. Impact of the number of steepest-descent iterations. Re-
sults are shown in terms of Jaccard J index.

mance of our approach saturates when iterating more than
15 times on YouTube-VOS and DAVIS.

Impact of the sample size: During training, we crop a
patch 5 times larger than the ground truth bounding box to
exploit background consistency. However, we find that it
may be harmful to include too much unnecessary environ-
ment information. Therefore, we perform experiments to
analyse the results if we crop a smaller patch. The size
of the crop is set to different scaling factors relative to
the object bounding box size. The results on YT300 and
DAVIS2017 validation set are shown in Tab. 2. There is
a significant improvement of +1.2 and +0.7 in J score on
YT300 and DAVIS when increasing the sample scale from 2
to 3, meaning including more background information leads
to better results. We achieve best results when setting the
sample scale as 3 on YouTube-VOS and 4 on DAVIS. A

Sample scale relative to object 2 3 4 5
YT300 84.5 85.7 85.6 85.5
DAVIS2017 val 80.2 80.9 81.2 80.8

Table 2. Impact of the image sample size relative to the object
bounding box. Results are reported in terms of Jaccard J score.

larger patch will contain too much noisy environment in-
formation, leading to degradation in performance. We set
sample scale to 4 during inference in all our experiments.

Impact of the inter-frame interval: Here, we analyse
the inter-frame interval used for DAVIS and YouTube-VOS.
Results in terms of Jaccard J score are shown in Tab. 3 and
Tab. 4. Compared to using consecutive frames, selecting ev-
ery 5th frame gives an improvement of +0.7 in J score on
DAVIS2017 validation set. The performance will decrease
if we use larger inter-frame interval. While on YouTube-
VOS, since the sequence is annotated every 5 frames, the
minimal inter-frame interval that can be used is 5. There is
no substantial difference of using different inter-frame in-
tervals on YT300, so we generally set a value 15 for other
experiments.

Performance w.r.t. quality of boxes: Here, we analyze



Inter-frame interval 1 5 10 15
DAVIS2017 val 80.5 81.2 80.9 80.5

Table 3. Impact of the inter-frame interval on DAVIS. Results are
shown in terms of Jaccard J index.

Inter-frame interval 5 10 15 20 25
YT300 85.6 85.7 85.6 85.6 85.5

Table 4. Impact of the inter-frame interval on YT300. Results are
shown in terms of Jaccard J index.

the impact of input bounding box accuracy on segmenta-
tion performance. We manually add Gaussian noise to the
bounding box co-ordinates input to our network. The stan-
dard deviation of the Gaussian is set to noise level times the
object size. We evaluate the performance of our approach
for different noise level parameters. For each noise level,
we train a separate model using identical noise level during
training. The results of this analysis on YT300 and DAVIS
is shown in Table 5. Adding Gaussian noise with a stan-
dard deviation of 1% the target size to the bounding box
decreases accuracy by only 0.7J on YT300 and 1.0J on
DAVIS.

4. Additional inference details

We describe details about how we annotate large-scale
tracking datasets LaSOT and GOT10k. Generally, we use
the same inference setting as used for YouTube-VOS, ex-
cept for the number of frames. We select 5 frames for each
testing frame in order to save inference time and ensure
the high performance at the same time. We annotate every
frame of the sequence on GOT10K, while on LaSOT, we
only annotate every 5th frame. LaSOT contains very long
sequences and the objects generally move slowly. There is
no need to annotate adjacent frames because they are highly
correlated. Moreover, we only annotate up to 200 frames
from a video sequence to avoid generating too much data
for the same object.

5. Detailed Results on GOT10k

In this section, we provide success plots on the GOT10k
validation set. The success plots are obtained using the
Overlap Precision (OP) score. The OP score at a threshold
τ denotes the fraction of frames in which the intersection-

noise level 0 0.005 0.01 0.02 0.03

YT300 85.6 85.0 84.9 85.0 84.4
DAVIS2017 val 81.2 80.4 80.2 80.6 79.6

Table 5. Impact of inaccuracies in the input bounding box on seg-
mentation accuracy in terms of J index.

Figure 4. Success plots on the GOT10k validation set. The trackers
are ranked using the average overlap (AO) score in percentage.

over-union (IoU) overlap between the tracker prediction and
the ground truth box is greater than τ . The OP scores for a
range of thresholds in [0, 1] are plotted to obtain the success
plots. The trackers are ranked according the the average
overlap (AO) score, which is computed as the average IoU
overlap between the tracker prediction and the ground truth
box over all frames in the dataset. The LWL model trained
using our weakly annotated tracking data (LWL-Ours) ob-
tains the best AO score, outperforming the standard LWL
model 2.1%.

6. Results on YouTube-VOS
Here, we evaluate the LWL-Ours model trained using

our pseudo-labelled tracking datasets, in addition to the
YouTube-VOS and DAVIS datasets, on the YouTube-VOS
2018 validation set. A comparison with the state-of-the-art
approaches is provided in Tab. 6. LWL-Ours obtains com-
parable results with standard LWL and outperforms other
VOS methods significantly.

OSVOS
[1]

OnAVOS
[4]

PreMVOS
[2]

SiamRCNN
[5]

STM
[3] LWL LWL-Ours

J&F mean 58.8 55.2 66.9 73.2 79.4 81.5 80.9
Jseen 59.8 60.1 71.4 73.5 79.7 80.4 79.6
Junseen 54.2 46.1 56.5 66.2 72.8 76.4 75.7
Fseen 60.5 62.7 - - 84.2 84.9 83.9
Funseen 60.7 51.4 - - 80.9 84.4 84.3

Table 6. Comparison on YouTube-VOS 2018 validation set.

7. Qualitative results
We shown more qualitative results on DAVIS and

GOT10k in Fig. 2. and Fig. 3, respectively. Compared to
the ground truth masks on DAVIS, our approach gives high-
quality results for frames containing only a single object.



For frames containing multiple objects, our approach can
still delineate object boundary accurately if the overlapping
problem is not severe.
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